Stochastic modeling of drag forces in Euler-Lagrange simulations of particle-laden flows

Aaron M. Lattanzi1, Vahid Tavanashad2, Shankar Subramaniam2 & Jesse Capecelatro1,3

1Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI
2Department of Mechanical Engineering, Iowa State University, Ames, IA
3Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI
Drag force(s) acting on a collection of particles

Suspensions exhibit significant drag variation

Shallcross et al. (IP)
Akiki et al. (2016)

Fullmer et al. (2016)

1 Tenneti et al. (2016)
2 Akiki et al. (2017)
3 Esteghamatian et al. (2018)
Drag force(s) acting on a collection of particles

Suspensions exhibit significant drag variation

Existing drag laws fail to capture higher-order (HO) statistics $^{1-3}$

- Particle velocity variance
- Particle dispersion

Shallcross et al. (IP)
Akiki et al. (2016)

Fullmer et al. (2016)

1Tenneti et al. (2016)
2Akiki et al. (2017)
3Esteghamatian et al. (2018)
Drag force(s) acting on a collection of particles

Suspensions exhibit significant drag variation

Existing drag laws fail to capture higher-order (HO) statistics $^{1-3}$

- Particle velocity variance
- Particle dispersion

Why?

1 Tenneti et al. (2016)
2 Akiki et al. (2017)
3 Esteghamatian et al. (2018)
Drag force(s) acting on a collection of particles

Suspensions exhibit significant drag variation

Existing drag laws fail to capture higher-order (HO) statistics $^{1-3}$
- Particle velocity variance
- Particle dispersion

Why?
They coarse-grain the microstructure...

U

References:
1. Tenneti et al. (2016)
2. Akiki et al. (2017)
3. Esteghamatian et al. (2018)
Drag force(s) acting on a collection of particles

Suspensions exhibit significant drag variation. Existing drag laws fail to capture higher-order (HO) statistics, specifically:

- Particle velocity variance
- Particle dispersion

Why? They coarse-grain the microstructure...

Shallcross et al. (2014)
Akiki et al. (2016)
Fullmer et al. (2016)
Tenetti et al. (2016)
Akiki et al. (2017)
Esteghamatian et al. (2018)

Hydrodynamic forces:

\[m_p^{(i)} \frac{dU_p^{(i)}}{dt} = V_p^{(i)} \nabla \cdot \vec{\tau} \left[X_p^{(i)} \right] + \int \tau' \cdot n \, dS \]

Isolated sphere (Maxey-Riley)

\[3\pi \mu_f d_p f_{iso} \left(u_f - U_p^{(i)} \right) + \frac{\rho_f V_p^{(i)}}{2} \frac{d}{dt} \left(u_f - U_p^{(i)} \right) + \frac{3}{2} \sqrt{\pi \rho_f \mu_f} d_p^2 \int_0^t \left[\frac{d}{d\tau} \left(u_f - U_p^{(i)} \right) \right] \frac{(t - \tau)^{1/2}}{d\tau} \, d\tau \]

Quasi-steady drag
Added mass
Basset history

We seek a stochastic framework that incorporates these effects in the drag statistics of a suspension.

1 Tenneti et al. (2016)
2 Akiki et al. (2017)
3 Esteghamatian et al. (2018)
Talk forecast

Emphasize stochastic EL framework

- Hydrodynamic forces
- HO particle moments
- Statistical approach

1. **Stochastic hierarchy**
 - Langevin Eqs.

2. **Stochastic EL solver**
 - Improved predictions

3. **Closure for EE solvers**
 - Hydrodynamic sources

1. Lattanzi et al. (2020)
2. Lattanzi et al. (2021)
3. Lattanzi et al. (IP)
Neighbor-induced drag statistics

PR-DNS studies show Gaussian PDFs

1, 2, 3

Huang et al. (2017) Balachandar (2020)

Esteghamatian et al. (2018)

1 Akiki et al. (2017)
2 Seyed-Ahmadi et al. (2020)
3 Lattanzi et al. (2020)
Neighbor-induced drag statistics

PR-DNS studies show Gaussian PDFs \(^1\)–\(^3\)

Expand unresolved drag about the mean

\[
\int \tau' \cdot n \, dS = \langle F_d \rangle + F_d''(i)
\]

Figure:

1. Akiki *et al.* (2017)
2. Seyed-Ahmadi *et al.* (2020)
3. Lattanzi *et al.* (2020)
Neighbor-induced drag statistics

PR-DNS studies show Gaussian PDFs \(^1\)–\(^3\)

Expand unresolved drag about the mean
\[
\int \tau' \cdot n \, dS = \langle F_d \rangle + F''(i)
\]

- Specify statistics via \(F''(i)\)
 - Deterministic PIEP \(^1\)
 - Stochastic Langevin \(^3\)

\(^1\) Akiki et al. (2017)
\(^2\) Seyed-Ahmadi et al. (2020)
\(^3\) Lattanzi et al. (2020)

Esteghamatian et al. (2018)

Huang et al. (2017)

Balachandar (2020)
Neighbor-induced drag statistics

PR-DNS studies show Gaussian PDFs

Expand unresolved drag about the mean
\[\int \tau' \cdot n \, dS = \langle F_d \rangle + F''(i) \]

- Specify statistics via \(F''(i) \)
 - Deterministic PIEP
 - Stochastic Langevin

Choose \(\langle F_d \rangle \) correlation

- \(\langle F_d \rangle = f (Re_p, \phi) \)
- \(\langle F_d \rangle = f (Re_p, \phi, \rho_p/\rho_f) \)

1 Akiki et al. (2017)
2 Seyed-Ahmadi et al. (2020)
3 Lattanzi et al. (2020)
Consequence of force Langevin equation

\[
dF_d^{'''}(i) = -\frac{1}{\tau_F} F_d^{'''}(i) \, dt + \frac{\sqrt{2} \sigma_F}{\sqrt{\tau_F}} \, dW_t
\]

Evolution of particle-phase moments

- Gaussian drag fluctuations
- Exponential ACF

Lattanzi et al. (2020)
Consequence of force Langevin equation

\[dF_d''(i) = -\frac{1}{\tau_F} F_d''(i) \, dt + \frac{\sqrt{2}\sigma_F}{\sqrt{\tau_F}} \, dW_t \]

Evolution of particle-phase moments

- Gaussian drag fluctuations
- Exponential ACF
- Source of velocity variance
- Source of dispersion

Lattanzi et al. (2020)
Consequence of force Langevin equation

\[dF''(i) = -\frac{1}{\tau_F} F''(i) \, dt + \frac{\sqrt{2}\sigma_F}{\sqrt{\tau_F}} \, dW_t \]

Evolution of particle-phase moments

- Gaussian drag fluctuations
- Exponential ACF
- Source of velocity variance
- Source of dispersion

Higher-order drag statistics consistent with PR-DNS
Towards a stochastic drag framework

Equation of motion:

\[m_p^{(i)} \frac{dU_p^{(i)}}{dt} = \sum_{j=1}^{N} F_{\text{col}}^{(ij)} + V_p^{(i)} \nabla \cdot \bar{\tau} \left[X_p^{(i)} \right] + \int \tau' \cdot n \; dS \]
Towards a stochastic drag framework

Equation of motion:

\[m_p^{(i)} \frac{dU_p^{(i)}}{dt} = \sum_{j=1}^{N} F_{col}^{(ij)} + V_p^{(i)} \nabla \cdot \bar{\tau} \left[X_p^{(i)} \right] + \int \tau' \cdot n \, dS \]

\[\int \tau' \cdot n \, dS = \left\langle F_d^{(i)} \right\rangle + F_d''^{(i)} \]
Towards a stochastic drag framework

Equation of motion:

\[m_p^{(i)} \frac{dU_p^{(i)}}{dt} = \sum_{j=1}^{N} F_{col}^{(ij)} + V_p^{(i)} \nabla \cdot \bar{\tau} \left[X_p^{(i)} \right] + \int \tau' \cdot n \, dS \]

\[\int \tau' \cdot n \, dS = \left\langle F_d^{(i)} \right\rangle + F_d''^{(i)} \]

\[\left\langle F_d^{(i)} \right\rangle = f(Re_p, \phi) \]

Tenneti et al. (2011)
Towards a stochastic drag framework

Equation of motion:

\[m_p^{(i)} \frac{dU_p^{(i)}}{dt} = \sum_{j=1}^{N} F_{\text{col}}^{(ij)} + V_p^{(i)} \nabla \cdot \bar{T} \left[X_p^{(i)} \right] + \int \tau' \cdot n \, dS \]

\[\int \tau' \cdot n \, dS = \left\langle F_d^{(i)} \right\rangle + F''_d^{(i)} \]

\[\left\langle F_d^{(i)} \right\rangle = f \left(\text{Re}_p, \phi \right) \]

Tenneti et al. (2011)
Towards a stochastic drag framework

Equation of motion:

\[
m_p^{(i)} \frac{dU_p^{(i)}}{dt} = \sum_{j=1}^{N} F_{col}^{(ij)} + V_p^{(i)} \nabla \cdot \bar{\tau} \left[X_p^{(i)} \right] + \int \tau' \cdot n \, dS
\]

\[
\int \tau' \cdot n \, dS = \left< F_d^{(i)} \right> + F_d^{''(i)}
\]

\[
\left< F_d^{(i)} \right> = f(Re_p, \phi)
\]

\[
dF_d^{''(i)} = -\frac{1}{\tau_F} F_d^{''(i)} \, dt + \frac{\sqrt{2} \sigma_F}{\sqrt{\tau_F}} \, dW_t
\]

Tenneti et al. (2011)

\[
\tau_F \approx \tau_{col} = \frac{d_p}{24 \phi \chi} \sqrt{\frac{\pi}{T}}
\]

Chapman & Cowling (1970)
Towards a stochastic drag framework

Equation of motion:

\[
m_p^{(i)} \frac{dU_p^{(i)}}{dt} = \sum_{j=1}^{N} F_{\text{col}}^{(ij)} + V_p^{(i)} \nabla \cdot \bar{\tau} \left[X_p^{(i)} \right] + \int \tau' \cdot n \, dS
\]

\[
\int \tau' \cdot n \, dS = \langle F_d^{(i)} \rangle + F_d''^{(i)}
\]

\[
\langle F_d^{(i)} \rangle = f (\text{Re}_p, \phi)
\]

\[
dF_d''^{(i)} = -\frac{1}{\tau_F} F_d''^{(i)} \, dt + \frac{\sqrt{2} \sigma_F}{\sqrt{\tau_F}} \, dW_t
\]

Tenneti et al. (2011)

\[
\tau_F \approx \tau_{\text{col}} = \frac{d_p}{24 \phi \chi} \sqrt{\frac{\pi}{T}}
\]

Chapman & Cowling (1970)

Need model for \(\sigma_F \)
A correlation for drag variance

PR-DNS of fixed assemblies

- PUReIBM

Tavanashad & Subramaniam (2020)
A correlation for drag variance

PR-DNS of fixed assemblies

- PUReIBM

Tavanashad & Subramaniam (2020)

\[
f^\sigma_F = 6.52\phi - 22.56\phi^2 + 49.90\phi^3
\]
A correlation for drag variance

PR-DNS of fixed assemblies

- PUReIBM

\[
\sigma_F \equiv \frac{m_p^{\phi} F_{\text{single}}}{m_p} = f_{\phi}^\sigma f_{\text{iso}} \frac{(1 - \phi) \left\| \mathbf{u_f} \left[X_p^{(i)} \right] - U_p^{(i)} \right\|}{\tau_p}
\]

\[
f_{\phi}^\sigma = 6.52 \phi - 22.56 \phi^2 + 49.90 \phi^3
\]

\[
f_{\text{iso}} = (1 + 0.15 \text{Re}_p^{0.687})
\]

Tavanashad & Subramaniam (2020)
EL framework

NGA low mach solver

- Volume filtering, 2^{nd} order scheme

\[
\frac{\partial}{\partial t} ((1 - \phi) \rho_f) + \nabla \cdot ((1 - \phi) \rho_f u_f) = 0
\]

\[
\frac{\partial}{\partial t} ((1 - \phi) \rho_f u_f) + \nabla \cdot ((1 - \phi) \rho_f u_f \otimes u_f) = \nabla \cdot \bar{\tau} + (1 - \phi) \rho_f g - \mathcal{F}_{\text{inter}} + \mathcal{F}_{\text{mfr}}
\]

Lagrangian particle tracking

- Soft-sphere (multiple, enduring contacts)

\[
\frac{dX_p^{(i)}}{dt} = U_p^{(i)}
\]

\[
m_p^{(i)} \frac{dU_p^{(i)}}{dt} = \sum_{j=1}^{N} F_{\text{col}}^{(ij)} + F_{\text{inter}}^{(i)} + m_p^{(i)} g
\]

\[
F_{\text{inter}}^{(i)} = V_p^{(i)} \nabla \cdot \bar{\tau} \left[X_p^{(i)} \right] + \left\langle F_d^{(i)} \right\rangle + F_d''^{(i)}
\]
Homogeneous fluidization of elastic particles

Triply periodic box $^{1-2}$

- Force flow rate $\langle |\mathbf{W}| \rangle$
- Gravity opposes flow \mathbf{g}
- ρ_p/ρ_f, Re_m, ϕ

1Tenneti *et al.* (2016)

2Tavanashad *et al.* (2020)
Homogeneous fluidization of elastic particles

Triply periodic box $^{1-2}$

- Force flow rate $\langle |\mathbf{W}| \rangle$
- Gravity opposes flow \mathbf{g}
- ρ_p/ρ_f, Re_m, ϕ

Fluidized homogeneous heating system (FHHS)

- Velocity IC $\delta(u)$

1 Tenneti et al. (2016)

2 Tavanashad et al. (2020)
Homogeneous fluidization of elastic particles

Triply periodic box \(^{1-2}\)
- Force flow rate \(< |\mathbf{W}| >\)
- Gravity opposes flow \(\mathbf{g}\)
- \(\rho_p/\rho_f, \text{Re}_m, \phi\)

Fluidized homogeneous heating system (FHHS)
- Velocity IC \(\delta(\mathbf{u})\)

Fluidized homogeneous cooling system (FHCS)
- Over-prescribed variance \(\mathcal{N}[0, \sigma_v, 0]\)

1. Tenneti et al. (2016)
2. Tavanashad et al. (2020)
Fixed conditions: $\frac{\rho_p}{\rho_f} = 100$, $\phi = 0.1$

- Stochastic EL (---) Standard EL (---) PR-DNS (○)

Stochastic FL captures growth and steady velocity variance
Fixed conditions: $Re_m = 20, \ \rho_p/\rho_f = 100, \ \phi = 0.1$

- Stochastic EL (---)
 - Standard EL (---)
 - PR-DNS (○)

Stochastic FL captures decay and steady velocity variance
FHHS: $\phi, \rho_p/\rho_f$ sweep

Fixed conditions: $Re_m = 20$

- Stochastic EL (—) PR-DNS (○)

Stochastic FL captures dynamics over wide range
Talk forecast: extensions

Emphasize stochastic EE framework

- Hydrodynamic forces
- HO particle moments
- Statistical approach

1. Stochastic hierarchy
 - Langevin Eqs.

2. Stochastic EL solver
 - Improved predictions

3. Closure for EE solvers
 - Hydrodynamic sources

1. Lattanzi et al. (2020)
2. Lattanzi et al. (2021)
3. Lattanzi et al. (IP)
Extension to Euler-Euler frameworks

Homogeneous, smooth, elastic spheres

\[\frac{dT}{dt} \equiv S - \Gamma = \frac{2}{3} \langle A_i' V_i' \rangle \quad T = \frac{1}{3} \text{Tr} \left(\langle V'_p \otimes V'_p \rangle \right) \]
Extension to Euler-Euler frameworks

Homogeneous, smooth, elastic spheres

\[\frac{dT}{dt} \equiv S - \Gamma = \frac{2}{3} \langle A'_i V'_i \rangle \quad T = \frac{1}{3} \text{Tr} \left(\langle V'_p \otimes V'_p \rangle \right) \]

Tenneti et al. (2016)
Extension to Euler-Euler frameworks

Homogeneous, smooth, elastic spheres

$$\frac{dT}{dt} \equiv S - \Gamma = \frac{2}{3} \langle A_i' V_i' \rangle$$

$$T = \frac{1}{3} \text{Tr} \left(\langle V'_p \otimes V'_p \rangle \right)$$

Require solution to Fokker-Planck

$$\frac{\partial P(v', a''; t)}{\partial t} + \frac{\partial}{\partial v'} \left[(a'' - \frac{1}{\tau_d} v') P \right] - \frac{1}{\tau_{a''}} \frac{\partial}{\partial a''} (a'' P) = \sigma_{a''}^2 \frac{\partial^2 P}{\tau_{a''} \partial a''^2}.$$
Extension to Euler-Euler frameworks

Homogeneous, smooth, elastic spheres

\[\frac{dT}{dt} \equiv S - \Gamma = \frac{2}{3} \langle A'V'_i \rangle \]

\[T = \frac{1}{3} \text{Tr} \left(\langle V'_p \otimes V'_p \rangle \right) \]

Require solution to Fokker-Planck

\[\frac{\partial P (v', a''; t)}{\partial t} + \frac{\partial}{\partial v'} \left[\left(a'' - \frac{1}{\tau_d} v' \right) P \right] - \frac{1}{\tau_{a''}} \frac{\partial}{\partial a''} \left(a'' P \right) = \frac{\sigma_{a''}^2}{\tau_{a''}} \frac{\partial^2 P}{\partial a''^2}. \]

Tenneti et al. (2016)
Extension to Euler-Euler frameworks

HHS $S \& \Gamma$

HCS $S \& \Gamma$

Density ratio $\rho_p / \rho_f \ll 1$

Well behaved extrapolation:

Predicts T_∞ saturation for $\rho_p / \rho_f \ll 1$

Potential general theory from gas-solid to bubbly flows
Extension to Euler-Euler frameworks

HHS S & Γ

HCS S & Γ

$T(t)$

Density ratio $\rho_p/\rho_f \ll 100$

Predicts T_∞ saturation for $\rho_p/\rho_f \ll 1$
Extension to Euler-Euler frameworks

HHS S & Γ

HCS S & Γ

$T(t)$

Density ratio

Well behaved extrapolation: $\rho_p/\rho_f \ll 100$

Predicts T_∞ saturation for $\rho_p/\rho_f \ll 1$

Potential general theory from gas-solid to bubbly flows
Extension to Euler-Euler frameworks

HHS S & Γ

HCS S & Γ

$T(t)$

Density ratio

1. Capture $S(t)$, $\Gamma(t)$, $T(t)$ in HHS & HCS
2. Well behaved extrapolation: $\rho_p/\rho_f \ll 100$
3. Predicts T_∞ saturation for $\rho_p/\rho_f \ll 1$
4. Potential general theory from gas-solid to bubbly flows
Questions?