

Numerical Simulation of Rock Fracture Coverage with Proppants during Hydraulic Fracturing

Farid Rousta¹, Amir Mofakham¹, Dustin Crandall², Goodarz Ahmadi¹

Department of Mechanical and Aeronautical Engineering Clarkson University, Potsdam, NY

² National Energy Technology Laboratory US Department of Energy, Morgantown, WV

Outline

- Introduction
 - ☐ Hydraulic fracturing
 - □CFD-DEM Code
 - □Rough-Wall Fractures
- Results
 - I. CFDEM® solver
 - ☐Fracture coverage
 - II. Star CCM + solver
 - □No roughness
 - ☐Fracture coverage
 - □ Characteristics in time
 - ☐Particle displacement in time
- Conclusions and future study

Introduction - Hydraulic Fracturing

Purpose

• Releases petroleum or natural gas trapped in shale rock formations.

Fracturing Procedure

- Drilling a horizontal well in the targeted formation and inserting a steel pipe with holes into the wellbore.
- Pressurized liquid and proppants are injected into wellbores.
- The targeted formation fractures.
- Injection process is ceased, and the fracking liquids is drained.
- Proppant keep the rock fractures open and allows gas/oil production

www.oilmanmagazine.com

Introduction - Hydraulic Fracturing

Why it is important?

- Shale gas production increased from 4% in 2005 to 24% in 2012.
- 300K hydraulically fractured wells in 21 states in 2015.
- Fracking generated 67% of natural gas and 43% of crude oil in 2015.
- In 2013 at least 2 million oil/gas wells were fractured.

Motivation

- Experimental studies are expensive and hard to perform
- Numerical studies with a realistic geometry for the fracture are scarce
- The effect of proppant's properties on the fracture coverage is not clear

Objectives

- Develop a computational model for proppant flows in rock fractures
- Assess the facture coverage for different conditions

Solution Methods

- Computational models
 - I. CFDEM® solver
 - II. Star CCM + solver

Introduction - CFD-DEM Code

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - ☐ Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

Introduction - Rough wall Fracture, CFD-DEM Code

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - ☐ Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

Results — First Solver, CFDEM Code

Fracture coverage

- Mean Aperture size = 0.4 mm
- Fracture Dimension = 0.1×0.1 m
- Slick water + Sand

- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

D = 0.3 mm

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - ☐ Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

STECHNOLOGIE THE

Smooth fracture

- Smooth walls
- Fracture Dimension = $100 \times 100 \times 0.4 \text{ mm}$ •
- Slick water + sand

Particles

• Gravity in –Z direction

- 1000 Particle per second
- Inlet pressure = $10 m^2/s^2$ normalized by the fluid density

Particle's distribution after 5s

1.290000e+02 parcels

Movie of particles displacement

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - ☐ Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

- Mean Aperture size = 0.4 mm
- Gravity in –Z direction
- Fracture Dimension = 0.1×0.1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - ☐ Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

- Gravity in –Z direction
- Fracture Dimension = 0.1×0.1 m
- Slick water + Sand

- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

- Gravity in –Z direction
- Fracture Dimension = 0.1×0.1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

Particle motion

Movie of particles injection and displacement over time for two of the considered cases

Y Z X

Simcenter STAR-CCM+

Simcenter STAR-CCM+ 0.35 mm

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - ☐ Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

- Gravity in –Y direction
- Mean Aperture size = 0.4 mm
- Fracture Dimension = 0.1×0.1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

- Gravity in –Y direction
- Mean Aperture size = 0.4 mm
- Fracture Dimension = 0.1×0.1 m
- Slick water + Sand

- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

- Mean Aperture size = 0.8 mm
- Gravity in –Z direction
- Fracture Dimension = 0.1×0.1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

- Gravity in –Z direction
- Fracture Dimension = 0.1×0.1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

Number of particles in the fracture over time

D. JECHNOLOGY

- Mean Aperture size = 1 mm
- Gravity in –Z direction
- Fracture Dimension = 0.1×0.1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

• Mean Aperture size = 1 mm

- Gravity in –Z direction
- Fracture Dimension = 0.1×0.1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

Contour of Velocity D = 0.3 mm

Number of particles in the fracture over time

- Mean Aperture size = 0.8 mm
- Gravity in –Z direction
- Fracture Dimension = 1×1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

Fluid velocity

- Mean Aperture size =0.8 mm
- Gravity in –Z direction
- Fracture Dimension = 1×1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

Number of particles in the fracture over time

Particle motion

Simcenter STAR-CO

Movie of particles injection and displacement over time

- Mean Aperture size =0.8 mm
- Gravity in –Z direction
- Fracture Dimension = 1×1 m
- Slick water + sand
- 1000 Particle per second
- Inlet pressure = $10 m^2 / s^2$ normalized by the fluid density

D = 0.3 mm

Conclusions

- A novel procedure to numerically study the proppant transport in fractures with realistic surface roughness was introduced.
- Sample results on effect of particle diameter on proppant distribution and coverage of the fracture were presented.
- The predictions of the solver are comparable:

Solver 1 (case 1): (Mean Aperture size = 0.4 mm)	Solver 2 (case 1): (Mean Aperture size = 0.4 mm)
D= 0.3 mm : 2.5% coverage after 10 s D= 0.35 mm : 9.3% coverage after 20 s	D= 0.3 mm : 2.1% D= 0.35 mm : 6.1% D= 0.37 mm : 8.2%

• There was an optimal proppant diameter for a given mean aperture for the maximum coverage. For an aperture height of 0.4 mm the mean diameter was 0.37 mm (92.5%).

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

Conclusions

• For the mean aperture height much higher than particles diameters the effect of roughness is negligible

Future Study

- For the future study, the effect of fracture's characteristics including the mean fracture aperture and proppants properties on coverage would be investigated.
- The effect of gravity direction on the proppants transport and converge will be studied.

- Introduction
 - ☐ Hydraulic fracturing
 - ☐ CFD-DEM Code
 - ☐ Rough-Walled Fractures
- Results
- I. First solver (CFDEM®)
 - ☐ Fracture coverage
- II. Second solver (Star CCM +)
 - ☐ No roughness
 - ☐ Fracture coverage
 - ☐ Characteristic in time
 - ☐ Particle's displacement
- Conclusion and future study

Thanks for your attention!

Questions?

