A method to predict fluidized bed particle collision speeds and their propensity to agglomerate

Allan Runstedtler, Marc A. Duchesne

August 4, 2021

Canadä

Fluidized beds: Random and correlated particle motion

The Science and Beauty of Fluidization: High Speed Imaging of Particle Flow Fields Frank Shaffer and Balaji Gopalan USDOE/NETL

https://youtu.be/IFhrpSJZzck?t=53

Note:

- Random particle motion
- Collective/correlated particle motion
- The circulating fluidized bed video is technically not of a fluidized bed. The video
 is of a riser (which transports particles). Nonetheless, it beautifully illustrates both
 random and correlated particle motion.

Background: Particle agglomeration

http://www.balajiminerals.in/silica-sand.htm

Shabanian et al., Energy Fuels 33 (2019) 1603-1621.

Background: Wet particle agglomeration overview

Prepared by Jaber Shabanian

Background: Wet particle collision dynamics

Includes viscous flow and capillary effects. Restitution coefficient expressed as a closed-form equation.

Has since been extended to non-identical particles.

Jaber Shabanian, Marc A. Duchesne, Allan Runstedtler, Madhava Syamlal, Robin W. Hughes, Improved analytical energy balance model for evaluating agglomeration from a binary collision of identical wet particles, Chemical Engineering Science, Volume 223, 2020.

Background: Wet particle collision dynamics

Jaber Shabanian, Marc A. Duchesne, Allan Runstedtler, Madhava Syamlal, Robin W. Hughes, Improved analytical energy balance model for evaluating agglomeration from a binary collision of identical wet particles, Chemical Engineering Science, Volume 223, 2020.

Collision speed

Restitution coefficient depends on collision speed. In fact, below a critical speed, the particles fail to rebound at all. If we could predict collision speed, we could advise on the tolerable coating layer thickness.

Key Questions

- 1. What is the average particle-particle collision speed?
- 2. Is there a rapid way to predict it?
- 3. Will the result be any surprise (*i.e.*, how will it compare to the superficial gas velocity supporting the bed)?

Applicability of the new method: Collision-driven, dense particle flow

Sommerfeld, Martin. (2017). Chapter: Numerical Methods for Dispersed Multiphase Flows. Particles in Flows, eds. Tomáš Bodnár, Giovanni P. Galdi, Šárka Nečasová

Dilute flow: Particle collisions are infrequent and, therefore, do not dissipate much kinetic energy.

Contact-driven: Particles are nearly always in contact. The fluid flow has little impact on particle motion.

Collision-driven: Fluid flow drives particle motion. Kinetic energy dissipation in the system is dominated by inelastic particle-particle collisions.

Elements of the new method: Particle experiences repeated inelastic collisions

Wikipedia: "Bouncing ball"

Elements of the new method: Particle is accelerated by the flow after each collision

Wikipedia: "Lazy river"

Elements of the new method: Random particle motion, time between collisions

Animation: Wikipedia: "Kinetic theory of gases"

Elements of the new method: Collective/correlated particle motion

Parcel concept and definition borrowed from DEM

e.g., Liqiang Lu, Balaji Gopalan, Sofiane Benyahia, Assessment of Different Discrete Particle Methods Ability To Predict Gas-Particle Flow in a Small-Scale Fluidized Bed, Ind. Eng. Chem. Res. 2017, 56, 27, 7865–7876

W particles per parcel

Average relative particle velocity, $v_{rel} = c \sqrt{2} v$ where $0 < c \le 1$ is "randomness coefficient"

Using the DEM definition of a parcel, we find that $c = W^{-1/3}$

Then the mean free time between collisions is given by

$$\tau = \frac{1}{\pi \ d^2 \ n_V \left(c \sqrt{2} \ v\right) g_0}$$

Elements of the new method: Dominant upward flow suspending the bed

Effect of the dominant upward flow on drag

Equation of motion for particle

$$m\frac{d\vec{v}}{dt} = \vec{F}_D + \vec{F}_g$$

Essence of the effect of the dominant upward flow on drag

$$\frac{\vec{F}_D}{m} \propto |\vec{u} - \vec{v}|^2 \frac{\vec{u} - \vec{v}}{|\vec{u} - \vec{v}|} = (\vec{u} - \vec{v}) |\vec{u} - \vec{v}| \approx (\vec{u} - \vec{v}) \sqrt{\overline{u_z}^2} = \overline{u}_z (\vec{u} - \vec{v})$$

Result is a viscous flow equation where the dominant, mean velocity augments the drag force in all directions

Steady fluid bed is isotropic

$$\frac{dv_x}{dt} = \frac{\pi \mu d}{8 m \epsilon^{2.65}} \left(0.3969 \frac{\rho \epsilon d \overline{u}_z}{\mu} + 6.048 \left(\frac{\rho \epsilon d \overline{u}_z}{\mu} \right)^{0.5} + 23.04 \right) (u_x' - v_x) + \frac{dv_y}{dt} = \frac{\pi \mu d}{8 m \epsilon^{2.65}} \left(0.3969 \frac{\rho \epsilon d \overline{u}_z}{\mu} + 6.048 \left(\frac{\rho \epsilon d \overline{u}_z}{\mu} \right)^{0.5} + 23.04 \right) (u_y' - v_y) + \frac{dv_z}{dt} = \frac{\pi \mu d}{8 m \epsilon^{2.65}} \left(0.3969 \frac{\rho \epsilon d \overline{u}_z}{\mu} + 6.048 \left(\frac{\rho \epsilon d \overline{u}_z}{\mu} \right)^{0.5} + 23.04 \right) (\overline{\mu}_z + u_z' - v_z) - \rho$$

$$\frac{dv}{dt} = \frac{\pi \mu d}{8 m \epsilon^{2.65}} \left(0.3969 \frac{\rho \epsilon d U}{\mu} + 6.048 \left(\frac{\rho \epsilon d U}{\mu} \right)^{0.5} + 23.04 \right) (u - v)$$

Note: Norouzi et al. and DiFelice drag models have been used here

Incorporate mean free time between collisions

Particles suffer speed reduction after collision according to restitution coefficient, *R*. Solve for the particle speed versus time after the collision.

$$\frac{v}{u} = 1 - (1 - R) e^{-\frac{\pi \mu d}{8 m \epsilon^{2.65}} \left(0.3969 \frac{\rho \epsilon d U}{\mu} + 6.048 \left(\frac{\rho \epsilon d U}{\mu} \right)^{0.5} + 23.04 \right) t}$$

Note the particle never recovers all its speed due to the exponential dependence. A cut-off value will need to be chosen.

Substitute the mean free time, τ , which depends on the particle speed.

$$\frac{v}{u} = 1 - (1 - R) e^{-\frac{\pi \mu d}{8 m \epsilon^{2.65}} \left(0.3969 \frac{\rho \epsilon d U}{\mu} + 6.048 \left(\frac{\rho \epsilon d U}{\mu} \right)^{0.5} + 23.04 \right) \left(\frac{1}{\pi d^2 n_V c \sqrt{2} v g_0} \right)}$$

Result

$$\frac{v/u - R}{1 - R} = 1 - e^{-\left(\frac{0.3969 \,Re_U + 6.048 (Re_U)^{0.5} + 23.04}{8\sqrt{2} \,c \,g_0 \,\epsilon^{1.65} \,(1 - \epsilon)}\right) \frac{1}{St_v}} \qquad (\epsilon > 0.8)$$

$$\frac{v/u - R}{1 - R} = 1 - e^{-\left(\frac{25}{\sqrt{2} c g_0} + \frac{7 Re_U}{24\sqrt{2} c g_0 (1 - \epsilon)}\right) \frac{1}{St_v}}$$
 $(\epsilon \le 0.8)$

where

$$Re_U = \frac{\rho \ d \in U}{\mu}$$
 and $St_v = \frac{\rho_s \ d \in v}{\mu}$

Choose cut-off, $\frac{v/u-R}{1-R}$, the fraction of speed the particle must recover prior to next collision. Then solve for particle speed, v.

1-inch bed, bubbling regime

- Simulations performed by Jaber Shabanian using MFiX-DEM. This was intended to be a small, rapid test case.
- Description: bed diameter 0.0254 m, particle density 2650 kg/m³, particle diameter 0.8 mm, particle restitution coefficient 0.9, 28 thousand particles, ambient pressure, air temperature 850°C, superficial gas velocity 1.5 m/s
- Therefore, $u/u_{mf} \approx 7.9 \ (u_{mf} \approx 0.19 \ m/s)$. This case is expected to have significant collective particle motion.

1-inch bed, bubbling regime

- Wall effects are significant due to the small (1-inch) diameter of the bed.
- Result was a "bouncing" bed. Would probably have been a "bubbling" bed were it not for its small diameter.
- According to MFiX-DEM, the average void fraction for this case was 0.61.

1-inch bed, bubbling regime

The present method

MFiX-DEM

Particle collision speed divided by superficial gas velocity is approximately 1%

2-inch bed, smooth regime

- Simulations performed by Haining Gao using Fluent-DEM. This case represents upcoming experimental runs.
- Description: bed diameter 0.053 m, particle density 2445 kg/m³, particle diameter 0.55 mm, particle restitution coefficient 0.9, 1.6 million particles, ambient pressure, air temperature 1000°C, superficial gas velocity 0.0942 m/s
- Therefore, $u/u_{mf}\approx 1.2~(u_{mf}\approx 0.0785~m/s)$. Average void fraction estimated to be 0.345. Predominantly random particle motion expected for this case.
- Note: 35 days using 18 cores to simulate 3 seconds of operation!

2-inch bed, smooth regime

Fluent-DEM animation: 2 seconds of operation

2-inch bed, smooth regime

Particle collision speed divided by superficial gas velocity is approximately 0.5%

Coupling the collision speed and restitution coefficient models

Result: The tolerable coating layer thickness was found to be very small (<1 micrometer), suggesting significant vulnerability to particle agglomeration.

Conclusion

- A new, rapid analysis method was developed to predict the average particle collision speed in fluidized beds whose kinetic energy dissipation is dominated by collisions (the "collision-driven" regime).
- The method accommodates collective particle motion.
- The results agreed with two CFD-DEM cases, one of a smooth fluidization regime and the other of a bubbling regime.
- The average particle collision speed was found to be two orders of magnitude lower than the superficial gas velocity that suspends the bed.
- The tolerable liquid coating thickness was found to be less than 1 micrometer, which suggests high sensitivity of fluid bed operation to particle stickiness.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2021

