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MOTIVATION

PREDICT ERRORS & CONVERGENCE AS CELL SIZE AND PARCEL COUNT CHANGE
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LITERATURE REVIEW
SINGLE TIME STEP — UNIFORM KERNEL

Schmidt (2006) and Schmidt and Bedford (2018)*
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STATIC TEST CASE
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fexact(X,y) = T[T sin(mx) sin(my)

5



NUMBER OF CELLS VS NUMBER OF PARCELS REQUIRED
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COMPARISON BETWEEN DIFFERENT KERNELS
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Kernel Comparison
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KERNEL PARAMETERS

rorcm) 11 1 & o]
ASME = M2 n Hh—j+za;§ thw >
k It = 1)
Kernel Variance Roughness Support Integral
Boxcar 0.3333 0.5 [-1,1] 1
Epanechnikov 0.2 0.6 [-1,1] 1
Gaussian 1 0.2821 [-00,00] 1
Gaussian 0.9734 0.2821 [-3.03,3.03]* 0.9976

Clipped



GLOBAL ERROR COMPARISON
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ASYMPTOTIC MEAN SQUARE ERROR
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KERNEL ERROR COMPARISONS, NX=32, NP=536,870,912

Kernel Expected L2 Empirical L2

Boxcar 0.000769 0.000693

Epanechnikov « 0.000649 0.000719

Gaussian . 0.001909 0.001589

Gaussian . 0.001859 0.001583
Compact



LOCAL ERROR COMPARISON
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Uniform Kernel

Full Gaussian Kernel
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SPATIAL AND STATISTICAL ERROR
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COMPARISON OF SPATIAL AND STATISTICAL ERROR

Kernel Expected Spatial Error Expected Statistical Error
Uniform 0.001005 0.000489
Epanechnikov 0.000362 0.000704
Gaussian 0.009049 0.000156

Compact Gaussian 0.008574 0.000156



FUTURE DIRECTIONS

 Transient Flow
3D simulations

* Higher order kernels
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