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COMSOL Packed Bed Reactor Modeling in CCPC

* In 2018, CCPC embarked on a program to model fixed bed
reactors for use in BETO funded projects

e COMSOL was selected as the prime modeling software
— Workstation package, easily deployed
— Full treatment of mass and heat transfer (MHT) at reactor scale

— Approximate treatment of diffusion and reaction inside
catalyst pellets: the Reactive Pellet Bed

* Pellet interiors are represented in one dimension
e Spherical equivalent diameters are used

Cpe in porous pellet S
« Each grid cell can represent N, pellets. N, can be >>1 P”T#. fah
« Extra dimension (as opposed to particle discretization)
. - . . Image made using COMSOL Multiphysics®
requires some additional subgrid modeling software and is provided courtesy of COMSOL

— New heat transfer models in COMSOL v6.0 ranging from
porous medium to more accurate packed bed model
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The 5-Carbon Company

Catalytic Upgrading of Bio-based Furfural to 1,5-Pentanediol:
A New Renewable Monomer for the Coatings Industry
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Furfural Tif[:ggglr(()_f_lf_lrf;g ! Dihydropyran 2-Hydroxytetra k 1,5-Pentanediol
(DHP) ) hydropyran (2-HY-THP) (1,5-PDO)

Fixed Bed Catalytic Reactor
Endothermic

BETO DFO Project, CRADA NFE-20-08393

CCPC | Consortium for Computational Physics and Chemistry



A 26 Species 22 Reactions:
H2
Catalyxx

H20 . .
co
CO2
Methane
Ethane
Propane
MeOH
EtOH
PrOH » )
. BUOH ) °
. 2-BuOH
iBUOH
HeOH
C2mH4m+1OH + C2nH4nO + H2 — C2(m+n) H4(m+n)+1OH + HZO 15. OcOH
16. DeOH
17. EitBuOH
18. EtHeOH -
19. Bual
Comple, LHHW-type rate expressions 20. Etal -
21. EtAce ’ )
22. DodOH

BETO DFO Project 23. TedOH | -

CRADA NFE-20-08396 24 EQcQH -
25. EiDeOH

Guerbet Chemistry

PN~

Alcohol dehydrogenation (endothermic)

C2nH4n+1OH — C2nH4nO + H2

— o - O
N = O

Aldol condensation (exothermic)

— )
R

Other reactions, including WGS
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Diffusion of R through boundary film
Diffusion of R into pores

Adsorption of R on catalyst surface
ReactionR 2> P

Desorption of P from catalyst surface

Film

Diffusion of P out of pores
Diffusion of P through boundary film

~N O o~ WODN P

3,4,5 ==  Film thickness is a function of local
conditions: composition, velocity, T & p

« COMSOL v6.0 Packed Bed Model
allows all of these steps to be modeled

« Typically, we combine steps 3-5into
rate expressions in eg LHHW form
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Porous Medium Conjugate Heat Transfer Models in COMSOL v6.0

Fluid
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* Local thermal equilibrium: one
temperature field

« Use skeletal matrix as solid phase,
and total fluid (pores plus voids) as
fluid phase

Ep = Erxr = Epoid T Oped Epore

05 =0, = 1- &4

* Typical:
Err = 0.81

0, =0.19

National I.aboratorv



Heat Transfer Parameters of Packed Beds

Wall Heat Transfer Coefficient, h,, Effective Skeletal Solids Thermal Conductivity, K,
200 oF —
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Fig. 2. Prediction of thermal conductivity:
L. Jorge et.al, “Evaluation of heat transfer in catalytic fixed bed reactors: a review”, slumina-oir, alumina-helium 120°F, (7).
Braz. J. Chem. Eng. 4, 16 (1999)

J. Butt,, “Thermal conductivity of porous catalysts”, AIChE Journal 106 (1965)
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Porous Medium Heat Transfer Models in COMSOL v6.0
Keis Of Solid + Fluid Phases

Plane layers parallel to heat
flow (volume average)

Plane layers perpendicular
to heat flow (reciprocal
average)

=
Ch

|

m lm
gl

=

ke eff

Power law (geometric mean) L
aeff = ™g " ™F

2he+ kb —2(ks—k,)0,

Solid spherical inclusions =R Sh Tk (ke k)P
r B Fr— "g/Yg

_ g 2kt ke 20k, ke,
S 2k + ket (k- kpeE,

Fluid spherical inclusions

ket by~ (ke—k )0,
ell = "Efk
cHE_+ (ko k)8

Wrapped screen

de 0 kok,

Sintered metal fibers =5 ol i i
ke+ ke,

g 2 2
‘ "Eeff' = Epkl'_" Hske +

HaEns
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Packed Bed Heat Transfer Model in COMSOL v6.0

* Local thermal nonequilibrium: two
Interspersed temperature fields Film T,

» T. = temperature in bulk fluid in voids hoe s
* T, =temperature inside pellets =(r) /

* No pellet-pellet heat transfer: all heat
transfer occurs between pellets and fluid

» Two important options: Kpe eff

- RV = Reaction Volume. Total (pellet) Pore
volume or pore volume

« HV = Heated Volume. Heat of reaction T
can be invoked separately for pellet

solid volume and pellet fluid volume Pellet
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Local Thermal Nonequilibrium Packed Bed Model: LTN-PB

aTy
ebpr a + pr sFu: VTb + V. CIf = Qpef + Ebe
Macroscopic heat transfer in bed voids qdr = —&pQperksVTy
(c,) 1 0, 0T\ _
PCo)eers ¢ (r Tpe) 0T T veers 5, | = Qe

Microscopic heat transfer inside pellet (pCy) = (1 = epe)PpeCope + EpePrlns
pe,e ’ ’

qpelr_rpe - hpef (Tf 4 | rpe)
1
Coupling condition at pellet-fluid interface [dpe (kau T 10 kpe eff)]
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' ' =RV = Total Vol HV = Solid Vol
LTN-PB Options for Reaction 5 ey rosivel m e i vel
&-RV = Total Vol HV = Solid+Fluid
Volume (RV) and Heated Volume IR 1 it e i
. - () -—-RV = Pore Vol HV = Fluid Vol
(HV) WhICh are CorreCt? :_._._ 15 -0~-RV = Pore Vol HV = Solid+Fluid
h 20
c = 25
(-
> < 30
- 0)"---
% ‘ 0_)-....._0 -35 _)/
& Q)/o
£ o
-Ir-s' 3 -40
o 70% 75% 80% 85% 90% 95% 100%
= Conversion, wt%
= % [=-RV =Total Vol HV =Solid Vol
L -o-RV = Total Vol HV = Fluid Vol .
2 =RV =Total Vol HV = Solid+Fluid Chemistry #1 Kool = 0.5 W/m.K
1 -+=RV = Pore Vol HV = Solid Vol Strona Endotherm 2
<RV = Pore Vol HV = Fluid Vol g Nya = 100 W/im<.K
0 f 100 g Catalyst T, - T,a = 20°C
70% 75% 80% 85% 90% 95% 100% L/D = 23

Conversion, wt%

| , , | OAK
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Manual Heat Balance Check:

80,000

60,000

40,000

20,000

y = 1968x + 2323
= 0.9999

10
AT

Simulation

20
- AT

[+ )
Adiabatic 7 C

# Heat Transfer Case 1
W Heat Transfer Case 2
A Heat Transfer Case 3
© Heat Transfer Case 4

30 40

Calculate AT, anar ¥
Adiabatic <
=
3
o
-30 L A k=
o || soss7  Labels = Specific Heat Inflow, J/kg =
N D
3 T
3 x )
-40 E 5#70 e ]
S 49,611 L 8
< A A A ‘a/ o
% [ 5K A 6477 et 7))
(@] v 31,35636,1222, 1339,0 @
° g 37,072. [ ] i
= o 35. m A ,155 I
2 -50 hat w 22,4418,1334,84772 @
m© o
E é - D17 70 . 72 2 3‘16
a 5 fs 257,936 7" Q ’
= s B 5’ a ,sg 251 O Adiabatic
60 |e o # Heat Transfer Case 1
g ,@ M Heat Transfer Case 2
S
% v o A Heat Transfer Case 3
Q © Heat Transfer Case 4
-70
-70 -60 -50 -40 -30
ATAcIiabatic' oc
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Slope is the average heat capacity of this
group of chemical species

In principle, this can be used to estimate
wall heat flow from experimental data

OAK
RIDGE
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Manual Heat Balance Check of LTN-PB Options
o I - ¢ RV =Total Vol HV = Solid Vol
Reaction Volum_e (RV): 200,000 | ¢ RV =Total Vol "V = Solid Vol |
depends on basis of rate @ RV = Total Vol HV = Solid+Fluid e
A RV =Pore Vol HV = Solid Vol i

constants. If rate o el T o T
constants are based on < 150,000 | o RV = Pore Vol HV = Solid+Fluid| - :

- ~

-, ’/'
total mass or volume of _g g/u -
catalyst (like here): E B el A

— 100,000 -
RV =total volume "g w’ng -V=1;25§.g?(9-;;.;30.6

I -

.
Heated Volume (HV): lines % so00 - @d - senen
(a) and (d) are closest to & R = 0.999
line shown on previous
slide: 0 B J
HV = solid volume only 0 10 20 30 40 50 60 70

ATSimuIation B ATAdiabatic’ °C
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Packed Bed Model LTN-PB
Predicts Less Heat Transfer
than Porous Medium Models

5
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= <-Volume Average  -<-Fluid Inclusion
o @ Sintered Metal @-Power Law
°c 1 . .
= -+-Solid Inclusion --Wrapped Screen

-o-Reciprocal Average #-LTN-PB
0
80% 85% 90% 95%

Conversion, wt%

AT (Toutlet'TinIet)' °C

-<-Volume Average <-Fluid Inclusion
@-Sintered Metal
10 | *Solid Inclusion --Wrapped Screen

-o-Reciprocal Average #-LTN-PB

4-Power Law

80% 85% 90% 95% 100%

Conversion, wt%

100%

Chemistry #1 Ko = 0.5 W/m.K
Strong Endotherm h,, = 100 W/m2.K
100 g Catalyst T, - T, = 20°C
L/D =23

OAK
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Heat Transfer Significantly Affects Conversion at Lab Scale

100%
Chemistry #1
Strong Endotherm
100 g Catalyst 95%
L/D =23 X
)
S
c 90%
Koo = 0.5 W/m.K 2
h =100 W/m2.K g
wall . g -<-Volume Average  --Fluid Inclusion
Tin = Twan = 20°C O 8% I3 Sintered Metal -a-Power Law
-+~Solid Inclusion -o-Wrapped Screen
-o-Reciprocal Average #-LTN-PB
80%

WHSV, hr-1
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Packed Bed Model LTN-PB ol [ e
Shows Large Differences In
Lab and “Pilot+” Scales T Settke /D=
O
= 25
100% £
M
% 35
95% =
|—
< -45
2 90%
g‘ -55
Q 75% 80% 85% 90% 95% 100%
g 85% .
& Conversion, wt%
U -
80% ®i00e L/b=23 Koot = 0.5 W/m.K
#61.1kg, L/D =37 Chemistry #1 Nyan = 100 W/m2.K
75% Strong Endotherm T, =Base + 20°C
WHSV, hr-1 T, = Base

OAK
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Test: LTN-PB Model Supports Scaleup Step of ~1,000X!!

> PYRAN RPD

The 5-Carbon Company TeChnOIOQIeS

100% Cwy
N
)
S
c
9
£
()]
>
c
S Large scale test
results agree closely
with LTN-PB model at
same temp and flow
#Adiabatic Model #4-lsothermal Model @-LTN-PB
Multiple reactor system holds 100’s of kgs of catalyst 0
WHSV, hrt
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Catalyxx: Heat Balance Cross-Check Works, Even With Complex Thermo

0 ,.
B Cooling Wall Temp Base - 30°C o
% Cooling Wall Temp Base - 50°C *,l'
o
'S -40,000| A Cooling Wall Temp Base - 70°C X
et @ Cooling Wall Temp Base - 90°C .A’ 60 N2 P
§ *" ’ Flows
> -80,000 =’
3 o 40
t
© -120,000 /’l
2 y = 2333.8x s o 20 /
© R? = 0.9998 ,&‘ 5 )
G ’I = ”o'
o -160,000 = 3
o f“ g 0 «
(Vs ” h
<
-200,000 @ B Cooling Wall Temp Base - 30°C
-90 -70 -50 -30 -20 |4 Cooling Wall Temp Base - 50°C
o -A-Cooling Wall Temp Base - 70°C
ATsimutation - ATadiabaticr "€ -@-Cooling Wall Temp Base - 90°C
— -40
Cata Iyxx 0 20 40 60 80
AT‘I\diabatic' °C
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Comparison of 12 kg P-plant and 5-Ton Bed (Volume Average Model)

Inlet
- — +60°C
5-Ton L/D 10, Tin = Twall = Base 48-5-Ton L/D 10, Tin = Twall = Base
-#-12 kg P-plant, Tin = Twall = Tside = Base
--12 kg P-plant, Tin = Twall = Tside = Base
: . Repeat this .| +50°C
£ comparison
g 3 :
z g with LTN-PB
g 8 if possible Sid
'ae +40°C
Inlet
WHSV, hrt WHSV, hrt +30°C
48-5-Ton L/D 10, Tin = Twall = Base 48-5-Ton L/D 10, Tin = Twall = Base
-9-12 kg P-plant, Tin = Twall = Tside = Base -+-12 kg P-plant, Tin = Twall = Tside = Base +20°C
§ g Note: P-plant
3 3 reactor has_a +10°C
> = side inlet with
i 8 17% of flow
I
Outlet T Base
12 kg 5 Ton
(Not to Scale)
WHSV, hrt WHSV, hr! OAK
CCPC | Consortium for Computational Physics and Chemistry RIDGE
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Yield Optimization Conditions at 5-ton Scale (Volume Average Model)

8-5-Ton L/D 10, Tin = Twall = Base Inlet
48-5-Ton L/D 10, Tin = Twall = Base <-5-Ton L/D 10, Tin = Twall = Base+45°C ] +60 °C
-6-5-Ton L/D 10, Tin = Twall = Base+45°C
®
% = { +50°C
T o
2 o
Q
+40°C
CO formation is
WHSV, hrt most endothermic |-
. +30°C
48-5-Ton L/D 10, Tin = Twall = Base
-6-5-Ton L/D 10, Tin = Twall = Base+45°C
-5,000 W
=3 +20°C
§ é -10,000 485 Ton L/D 10, Tin = Twall = Base
e £ -5 Ton L/D 10, Tin = Twall = Base+45°C
. (1]
S Q
g < -15000 +10°C
3 o
Q 3
: :
Repeat this o 20,000 Outlet
comparison utie — Base
i - -25,000
Y]Y'th LT.Ik\:l PB Base+45°C Base
I Q O S S I e WHSV, hr~1 WHSV, hr-l OAK
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Conclusions

« COMSOL Reactive Pellet Bed models have been developed for endothermic,
exothermic and mixed chemical reaction systems in the bio-renewables space

— Most complex to date: Guerbet chemistry with 26 species and 22 reactions, with
complex LHHW-type kinetic expressions

— Choice of heat transfer model and parameters is important for scaleup modeling

e In selecting a heat transfer model, guantity and quality of experimental data
will probably be the limiting factor
 So ... recommend a bracketing approach with the packed bed heat transfer
model LTN-PB and the volume average porous medium model as extremes
—Note: an LTN-PB bug fix is in the works. Contact us if you want to run model LTN-
PB
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