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g Mesh/Overset Capabilities for Accurate Cratering
| Simulations

Goulburn

etween

nt and plume impingement is

a ugnuy voupled process

* Trajectory variation/pitch/attitude control
can greatly modify rate and orientation of
crater formation and evolution

» Surface erosion and debris trajectory pose
significant risks to manned and unmanned
vehicles and in-situ assets (surface material
can reach 10 km/s speeds!)

* Non-orthogonal landings increase risks

e PSl validation data currently limited to Figure 1. (left) LEM camera views from Apollo 15 landing
. . heigh showing progression of plume-regolith interaction resulting in
Statlonary (bUt varying neig tS) [1] high-speed particle sheets obscuration. [1](right) Regolith
e \/alidation data at impact speeds <=5 m/s is dust cloud formation during Morpheus lander plume

impinging on Mars simulant[2].

limited (Apollo 14 landed at ~4.3 m/s)

Sleepy Dragon

Hepburn Burnside

Goulburn

(1] Diaz-Lopez, M. X., Gorman, M., Rubio, J. S., and Ni, R., “Plume-surface Interaction Physics Focused Ground Test : Figure 2. MSL Skycrane plume induced surface cratering[3].
Diagnostics and Preliminary Results,” AIAA Scitech 2022 Forum, 2022, p. 1810.

CFj www.cfd-research.com 2 Of 18 N \\

RESEARCH



Overview of Presentation

Governing Equations
Overset Methodology
Moving Mesh Methodology
Verification Cases
* Theodorsen Plunging Airfoil (gas-only)
* Houim Shocktube
Seguin Sphere Drop Validation Study
* Comparisons of 3 Granular Pressure Models
e Comparisons of Full-Slip to No-Slip Wall Boundary
Conditions
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Governing Equations: Overview
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Overset Methodology

e Grids are merged and tagged in pre-processing
step, with overset geometric region specified at
input

* Geometric specification and nearest neighbor/KD-
tree search defines cells for hole-cutting and
interpolation/information exchange between
meshes

* Cell blanking metrics for hole-cutting/interpolation:
* 0:Standard cell used for interpolation purposes
e 1:Standard cell not used for interpolation purposes
e 2:Cell that receives information from interpolation
donor cells

* 3:Frozen cell that is not overlapping any other cell, or *

cell outside of physical domain
* 0Oor1cellsare solved normally
* 2 or3cellsareinterpolated from 0 cells and have
solution data overridden

» At least 2 fringe (overlapping) cells required to
avoid hole-cutting issues

* Boundary condition at interface is a Dirichlet
boundary with values interpolated using second-
order van Aldaba-limited upwinding
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Moving Mesh Methodology

* Four types of motion supported: prescribed, six-degrees of freedom (6DOF),
rotation, and stationary
* Geometric conservation law (GCL) [1] accounts for effect of moving mesh velocity

(Us)
e = {UuﬂS)LR

* GCL condition is removed as a source Hp for the gas- and granular-phase states Q4 s

Hg-= [ﬂ’P)g ngg Hr—- = (ap)s g:1Qs

* GCL condition is also removed from source Jacobians

dQ
Hsp—=¢.—
SD g qu

* For 6DOF, forces and torques on the surface of moving body are computed from
contributions of gas- and granular-phase

F=F +Fy=(Fg+F,),;+(F, +Fy)y
T=T+Tv = (T, +T), + (T + Ty),
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Verification Cases: Theodorsen Airfoil

* Initial verification case of canonical gas-only Theodorsen Plunging Airfoil

* Comparison between theoretical, moving mesh, and overset-moving mesh

* Results for both moving mesh and overset-moving mesh compare favorably to theoretical
values of lift coefficient

h(t) = h,sin(2rft)

Tc . 2« .
Cr=—h+—C(k)h
2U;D Usw
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Parameters for Houim Shock Tube Case [1]

Houim Shock Tube

Verification Cases

(0.25,0.04) to (0.35,0.06) linearly from

Background mesh 6x600 nodes over
an initial position of [0.3,0.5]

[(0,0),(0.6,0.08)] m
Overset mesh is moved diagonally

over the background mesh from
Simulation is performed for 1840

Houim shock tube case is utilized to
iterations at dt = 1e-7 s

verify gas-granular overset

methodology
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[1] Houim, R. W, and Oran, E. §., “A multiphase model for compressible




Verification Cases: Houim Shock Tube
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Verification Cases: Houim Shock Tube
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Seguin Sphere Drop Validation Case

Experimental Setup

INGgnEs o * Steel sphere (d =5 mm) dropped from
n/ suction various heights (h=(0.05,0.5) m) and
— ) measured penetration depth ()
do P * Binis wide enough (D) and deep enough

(b) that wall effects of bin are negligible

The granular medium consists of glass beads (p, = 2500 kg/m*3) slightly
polydisperse in size, with a diameter range of 300—400 7. Before each
drop, the granular medium is prepared by gently stir-ring the grains with a
thin rod. The container is then overfilled and the surface levelled using a
straight edge. We have checked that this preparation leads to
reproducible results with only small variations. The grain size is much
smaller than the falling sphere diameter so that the granular medium can
be considered as a continuum medium. [1]

[1] Seguin, Antoine, Yann Bertho, Philippe Gondret, and Jér6me Crassous. "Sphere penetration by impact in a granular medium: A collisional process." EPL (Europhysics
Letters) 88, no. 4 (2009): 44002.
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Seguin Sphere Drop Validation Case

Numerical Setup

e 2D grid with overset sphere with 6DOF free-fall

* Free-slip and no-slip wall boundary conditions
on sphere (partial-slip not verified/validated at
time of study)

INSERT MESH e 350 um glass spheres in granular bed
HERE e Simulations run until steady-state (the sphere
is motionless in granular material)
e Laminar flow with hllcCT flux for gas- and
granular-phase
« 2nd-order spatial (Venkatakrishnan limiter) and
temporal (implicit, 10 newton iterations per
time step, dt=1e-6 s) accuracy
e 3 granular pressures models tested
* Sriviastava [1]
* Pengfei [2]
* mu-Rheological [3]
[1] i}r;w;s;w;d; :npd?zuiléi;resan S., “Analysis of a frictional-kinetic model for gas—particle flow,” Powder technology, Vol. 129,
[ 2] ;;28229}; and Yu, X., “A general frictional-collisional model for dense granular flows,” Landslides, Vol. 16, No. 3, 2019,
[3] Guidized and moving bed rogies” Chemical Engineering Sclence, Vol 80,2002, pp. 219-398 — T
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Seguin Sphere Drop Validation Case

Full-Slip Boundary No-Slip Boundary

S\ s

Volume Fraction Volume Fraction
I.EIIOKeE--?C;H“l”i-S 0.0001 0.001 0.01 Ell ISﬁ(IlLTle-O] ].moy&ﬁnn}]:]_}s 0.0001 0.001 0.01 lﬁl] lS.loﬁTl-a--O]
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Seguin Sphere Drop Validation Case

Normalized Penetration Depth
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Seguin Sphere Drop Validation Case

Full-Slip Comparison of Trajectories
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Seguin Sphere Drop Validation Case

Comparison of Velocities
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Conclusions & Future Work

e Conclusions
* OQOverset and moving mesh algorithms successfully implemented in Loci/GGFS

* Verified for several gas-only and gas-granular cases (some not shown herein)
* Loci/GGFS data compared favorably to Seguin data
* No-slip results with Pengfei and mu-Rhelogical models closer to Seguin
* Full-slip boundary condition on sphere results in greater penetration
depths/higher velocities
* Both boundary conditions (stronger in no-slip) clearly show rebound
phenomena as granular bed is compressed
e While boundary conditions presented herein ‘bound’” more realistic partial
slip case, exact matching of experiment was not expected
e Future Work
* Investigate partial slip wall of Schneiderbauer [1] with all granular pressure models
presented herein
* Comparison to DEM
* Investigate effects of polydispersity of granular material on penetration

[1] Schneiderbauer, Simon, David Schellander, Andreas Loderer, and Stefan Pirker. "Non-steady state boundary conditions for collisional granular flows at flat frictional
moving walls." International Journal of Multiphase Flow 43 (2012): 149-156.

CFJ www.cfd-research.com 17 Of 18

RRRRRRRR



Acknowledgements

* Worked performed under NASA SBIR Contract 80ONSSC20C0032

CF pd www.cfd-research.com 18 Of 18

RRRRRRRR



