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Introduction

• Airborne viral contagion is a 
multidisciplinary problem

• Immunology

• Virology

• Fluid Mechanics

• Most of our guidelines –
research done in the 1950s
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Room-Scale problem
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Ejection-Scale problem

K. Liu et al, Scientific Reports 11, 1 (2021).



Well-Mixed Models

• Virus-laden particles mix over the entire 
room and can infect the receiver equally 
regardless of their location.

𝐶 𝑟, 𝑡 = 𝐶𝑠 𝑟 1 − 𝑒−𝜆𝑐 𝑟 𝑡

𝐶𝑠 𝑟 =
𝑃 𝑟

𝜆𝑐 𝑟 𝑉

𝜆𝑐 𝑟 = 𝜆𝑎 + 𝜆𝑠 𝑟 + 𝜆𝑓 𝑟 + 𝜆𝑣(𝑟)

Viral deactivationFiltration

Settling: 𝜆𝑠 𝑟 =
𝑣𝑠 𝑟

𝐻

Ventilation: 𝜆𝑎 𝑟 =
𝐴𝐶𝐻

𝑉𝑟𝑜𝑜𝑚 L. Morawska et al., J. Aerosol Sci. 40, 256–269 (2009).
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M. Z. Bazant and J. W. 
Bush, PNAS 118

(2021).



Occupancy vs Cumulative Exposure Time
𝑁𝜏 𝑤𝑚 =

𝜖

𝑄𝑏
2𝑝𝑚

2 𝐶𝑞𝑠𝑟 ො𝑛𝑤𝑚 𝜏

𝐴 = 83.6 𝑚2, 𝑉 = 301 𝑚3. Low relative 
transmissibility (𝑠𝑟 = 25%). Moderate risk 

tolerance (𝜖 = 10%). Cloth masks (𝑝𝑚 = 30%).

𝐴 = 22.3 𝑚2, 𝑉 = 53.5 𝑚3. High relative 
transmissibility (𝑠𝑟 = 100%). Low risk tolerance 

(𝜖 = 1%). Surgical masks (𝑝𝑚 = 10%).

𝑄𝑏: Rate of quanta emission
𝑝𝑚: Mask permeability
𝐶𝑞: Rate of quanta emission

5M. Z. Bazant and J. W. Bush, PNAS 118 (2021).



Objectives
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1. To test the robustness of  well-mixed model in predicting 
airborne viral contagion 

2. To recommend modified fluid-mechanics based guidelines 
for occupancy and CET.

𝑁𝜏 =
1

𝛾
𝑁𝜏 𝑤𝑚

Correction Factor

𝑁𝜏 𝑤𝑚 =
𝜖

𝑄𝑏
2𝑝𝑚

2 𝐶𝑞𝑠𝑟 ො𝑛𝑤𝑚 𝜏



Geometry and Boundary Conditions

10m

10m

3.2m

Particle radii: 0.1, 0.5, 1, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25 µm

2 million 
particles 

per 
radius
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𝐴𝐶𝐻 =
𝑈𝑖𝑛𝐴𝑖𝑛
𝑉𝑟𝑜𝑜𝑚

(ℎ−1)

Statistical Overloading



Governing Equations
Fluid Phase (Nek5000) Droplet Phase (Ppiclf)

∇ ∙ 𝒖 = 0

𝜕𝒖

𝜕𝑡
+ 𝒖∇ ∙ 𝒖 = −∇𝑝 + 𝜈 + 𝜈𝑡 ∇

2𝒖

𝜈𝑡 is obtained using dynamic Smagorinsky

𝒖 is the resolved velocity field

𝒖′is the perturbation velocity obtained 
using the Langevin model

𝑑

𝑑𝑡

𝑿𝑙

𝑼𝑙
=

𝑼𝑙

𝑭𝑙/𝑚𝑙

𝑭𝑙 = 𝑭𝑞𝑠,𝑙 + 𝑭𝑔,𝑙

𝑭𝑞𝑠,𝑙 = 6𝜋𝜇𝑓𝑟𝑙 𝒖 𝑿𝑙 −𝑼𝑙 Φ Re𝑙

𝑭𝑔,𝑙 = 𝑉𝑙 𝜌𝑝 − 𝜌𝑓 𝑔

𝒖 𝑿𝑙 = 𝒖 𝑿𝑙 + 𝒖′ 𝑿𝑙

Langevin Model:

𝑢′ 𝑋𝑙 𝑡 + ∆𝑡 , 𝑡 + ∆𝑡 = 1 −
1

2
+
3𝐶0
4

𝐶𝑠
2 ሚ𝑆

2𝐶𝑌
𝑢′ 𝑋𝑙 𝑡 , 𝑡 +

𝐶0
3 ǁ𝜀∆𝑡

𝑓𝑤𝜉



Room Averaged Statistics

1% error
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Concentration is double 
averaged over all source and 

sink locations

Concentration is normalized by 
the steady state value of 

concentration

t (s)

ሚ𝜆 =
3600

𝐴𝐶𝐻
𝜆 ෩𝑉𝑠 =

3600

𝐴𝐶𝐻

𝑉𝑠
𝐻

𝑟𝑐 =
9 𝐴𝐶𝐻 𝐻𝜇𝑎
7200𝑔Δ𝜌

Well-mixed theory 
remarkably accurate 
even for 𝑟 > 𝑟𝑐



𝒩𝑠𝑜 𝑥𝑠𝑜, 𝑟 =
ො𝑛 𝑠𝑖,∞ 𝑥𝑠𝑜, 𝑟

ො𝑛
∞
𝑟
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𝒩𝑠𝑖 𝑥𝑠𝑖 , 𝑟 =
ො𝑛 𝑠𝑜,∞ 𝑥𝑠𝑖 , 𝑟

ො𝑛
∞
𝑟

Sink Averaged: From the 
source perspective

Source Averaged: From the 
sink perspective

Normalized with the room 
average concentration



Source to Sink

𝑁𝜏 =
1

𝛾
𝑁𝜏 𝑤𝑚

Correction Factor

𝑁𝜏 =
𝜖

𝑄𝑏
2𝑝𝑚

2 𝐶𝑞𝑠𝑟 ො𝑛 𝑑 𝜏

ො𝑛 𝑑 𝜏 =
0
𝑟𝑐 ො𝑛 𝑑 𝜏, 𝑟 𝑉 𝑟 𝑄𝑏𝑛𝑠𝑜 𝑟 𝑑𝑟

0
𝑟𝑐 𝑉 𝑟 𝑄𝑏𝑛𝑠𝑜 𝑟 𝑑𝑟
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ACH 2.5

ACH 5

ACH 10



Corrected Guidelines

Unsafe

Safe with 
mechanical 
ventilation
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Classroom Nursing Home



Conclusions
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The well mixed assumption is 
extremely good at predicting the 
concentration at room level.

Well mixed theory fails for the 
larger diameters from a source and 
sink perspective.

Theory can be overly restrictive for 
the larger separation distances (d > 
5m) and too lenient for shorter 
separation distances (d < 4m). 
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