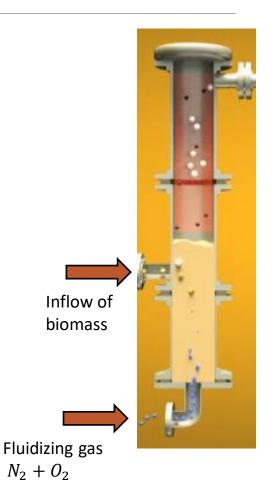
Eulerian multiphase models for biomass mixing and reactions in bidisperse gas-solid flows


BARLEV RAYMOND NAGAWKAR, SHANKAR SUBRAMANIAM, ALBERTO PASSALACQUA

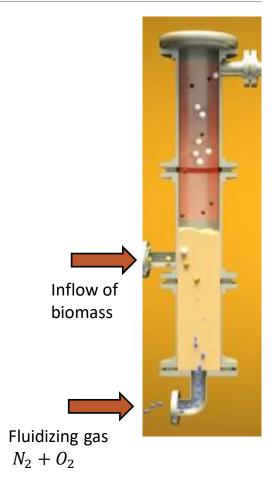
IOWA STATE UNIVERSITY

Autothermal pyrolysis

- •Thermochemical conversion of biomass for production of bio-fuels
- Conventional pyrolysis is done in the absence of oxygen
- Pyrolysis of biomass is an endothermic process
- •Heat is supplied to the walls of the reactor
- Feasible for small scale reactors
- Not feasible for plant-scale reactors due to the reduced surface area to volume ratio of the reactor
- •Heat transfer becomes a bottleneck for scale-up of the conventional biomass pyrolysis process.
- Autothermal pyrolysis aims at addressing this limitation
- •Small amounts of oxygen is injected into the reactor to allow partial oxidation of pyrolysis products.
- •The exothermic reactions supply heat for the endothermic reactions.

Important aspects

•Important aspects:


- Char combustions is one of the major contributors of heat
- Retention of char is essential for its reaction with oxygen
- The quick release of volatile gases from biomass is important for bio-oil yields
- The performance of the reactor may be affected by the geometric configurations of the fluidized bed reactor
- The quality of mixing of biomass and sand may be influenced by point of injection of biomass, affecting the yields

Hydrodynamics

- Eulerian multi-fluid model
- Investigation mixing in the fluidized bed reactor.

Chemistry

- What are the relevant chemistry mechanism for this process?
- Chemistry solver: chemFoam

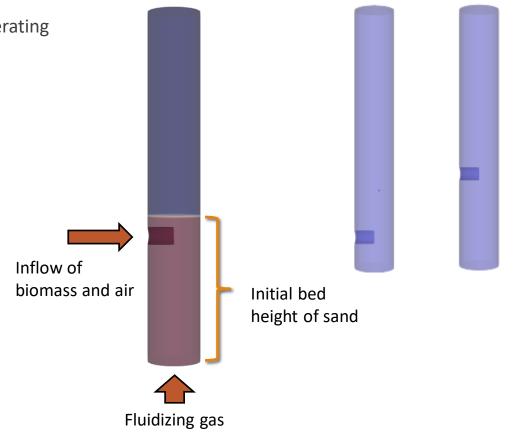
Hydrodynamics:

Mixing of biomass in sand is important in biomass pyrolysis

 Biomass at room temperature injected into a bed of sand at the desired operating temperature

Properties of the particles in question

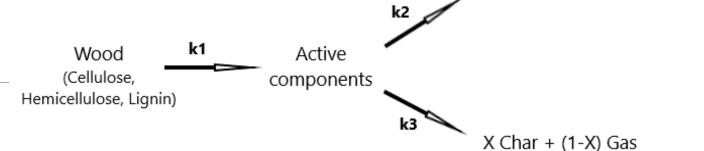
Solid particles	Size (μm)	Density (kg/m³)
Silica sand	600	2650
Biomass	1587	700


The reactor dimensions

• Diameter: 3.81 cm

• Height: 42. 7 cm

Biomass auger diameter: 1.27 cmBiomass injection height: 6.81 cm


• At what height should we inject biomass into the reactor?

Design 1

Design 2

Devolatilization

Ranzi 2008, Ranzi 2017

Multi-components and is a multi-step process.

Char combustion

Kinetic rate obtained from experiments done at the Bioeconomy institute, ISU

Secondary gas phase reactions

CRECK model

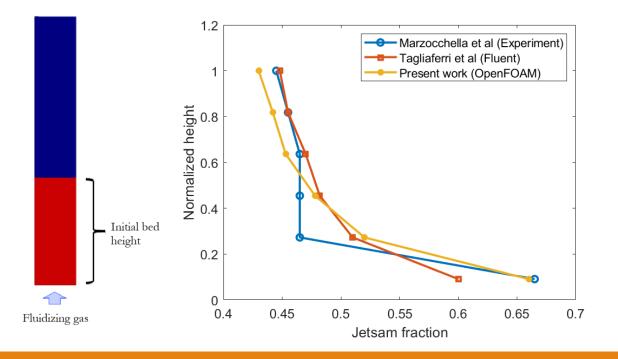
R.S. Miller, J. Bellan, A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics, Combust. Sci. Technol. 126 (1997) 97–137.

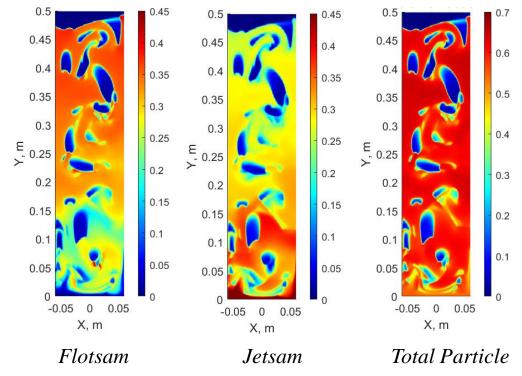
Tar

https://doi.org/10.1080/001022097 08935670.

Eulerian model

- •The gas phase is considered as the primary phase, and the solid phases are considered as the secondary phases.
- Phase volume fractions are used to track phases in the finite volume frame.
- •The volume fraction of the phases sum to unity.


$$\phi_g + \sum_{k=1}^K \phi_{s,k} = 1$$


- Each phase has an equations for continuity and momentum and energy.
- •Heat and mass transfer between phases
- Transport equations for species.
- •Closures for momentum exchange between phases: gas-particle drag, and particle-particle drag
- •Momentum exchange due to mass transfer between phases
- •Kinetic theory closures granular flows (granular temperature, particle pressure, solid viscosity, solid conductivity)
- Frictional stress model

Eulerian model: validation

Solid particles	Size (μm)	Density (kg/m³)
Flotsam: Silica sand	125	2600
Jetsam: Glass beads	500	2540

- Segregation of binary mixture of particles starting at a perfectly mixed condition
- Particles segregate as the bed is fluidized

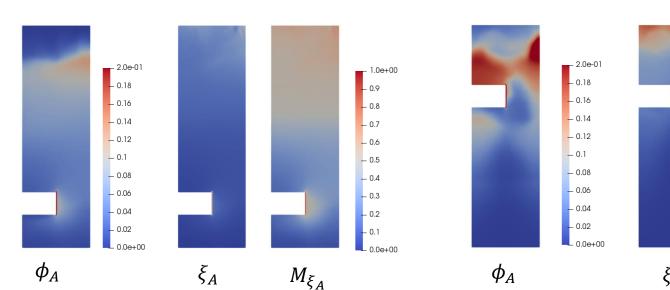
Tagliaferri C, Mazzei L, Lettieri P, Marzocchella A, Olivieri G, Salatino P. CFD simulation of bubbling fluidized bidisperse mixtures: Effect of integration methods and restitution coefficient.

Chem Eng Sci. 2013;102:324-334. doi:10.1016/j.ces.2013.08.015

Local solid mixing

- •Compute the solid fraction for biomass, ξ_A
- •Then compute the local solid mixing index
- How well does sand mix with biomass

$$\xi_A = \frac{\phi_A}{\phi_A + \phi_B}$$

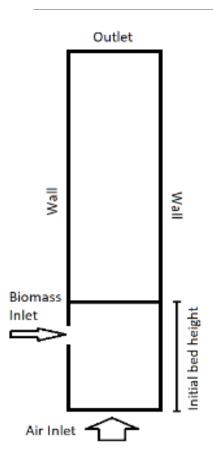

Can identify regions of rich and lean mixing unlike the conventional mixing indices

$$M_{\xi_{A}} = \begin{cases} \frac{\xi_{A}}{2\bar{\xi}_{A}}, & 0 \leq \xi_{A} < \bar{\xi}_{A} \\ 1 - \frac{1}{2} \left(\frac{1 - \xi_{A}}{1 - \bar{\xi}_{A}} \right), & \bar{\xi}_{A} \leq \xi_{A} \leq 1 \end{cases}$$

$$\{0 \le \xi_A \le 1\} \to \{0 \le M_{\xi_A} \le 1\}, with \overline{\xi_A} \to 0.5$$

Design 2

 $M_{\xi_A}=0.5$ corresponds to perfectly mixed state



Design 1

 M_{ξ_A}

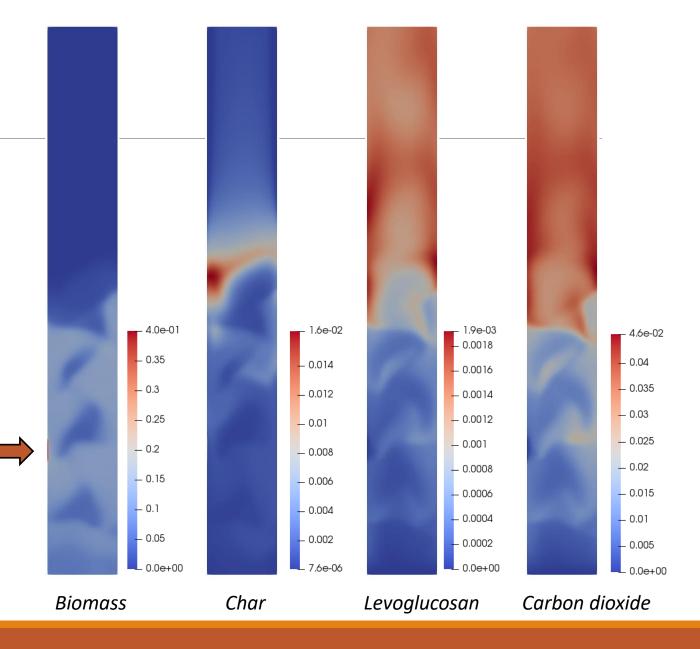
1.0e+00

Coupling hydrodynamics and reactions

Domain

- Reactor diameter: 3.81 cm
- Height: 42.7 cm
- Initial bed height: 10.5 cm
- Biomass inlet diameter: 1.27 cm
- Biomass inlet height: 6.81 cm
- Operating conditions
 - Air flow rate: 20 SLPM
 - Biomass feed rate: 1 kg/hr
 - Air inlet temperature: 773K
 - Biomass inlet temperature: 300K
 - Silica sand diameter: 600 μm
 - Biomass size 1587 μm

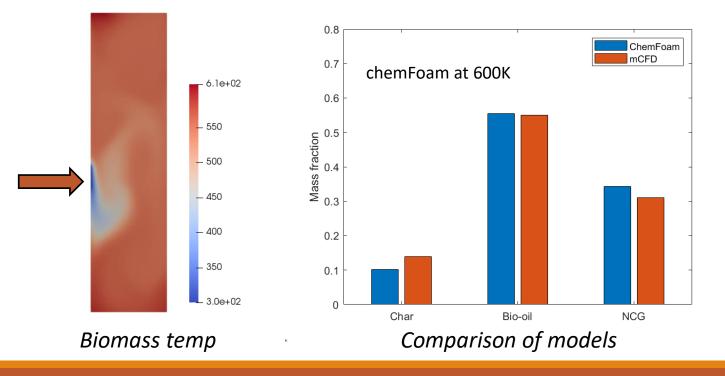
OpenFOAM

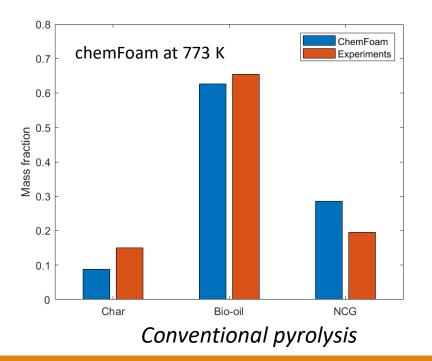

- Reacting multiphase solver
- Eulerian multi-model
- Kinetic theory closures
- Particle-particle drag (Syamlal)

Boundary conditions

- Superficial velocity inlet
- Pressure inlet-outlet
- No-slip wall condition for gas
- J&J wall conditions for particle velocity and granular energy at the wall
- Neumann boundary for volume fractions at the wall
- Neumann boundary condition for heat flux at walls to ensure no heat loss

CFD results


- Results with only the Ranzi devolatilization mechanism
- Biomass injected at the side of the wall as shown by arrow
- Instantaneous fields at 15 s
- •Few products of the Ranzi devolatilization:
 - Char
 - Levoglucosan ($C_6H_{10}O_5$)
 - Carbon dioxide (CO₂)



Yields

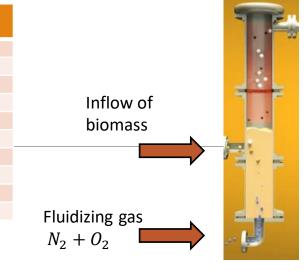
Polin JP, Peterson CA, Whitmer LE, Smith RG, Brown RC. Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor. *Appl Energy*. 2019;249:276-285. doi:10.1016/j.apenergy.2019.04.15

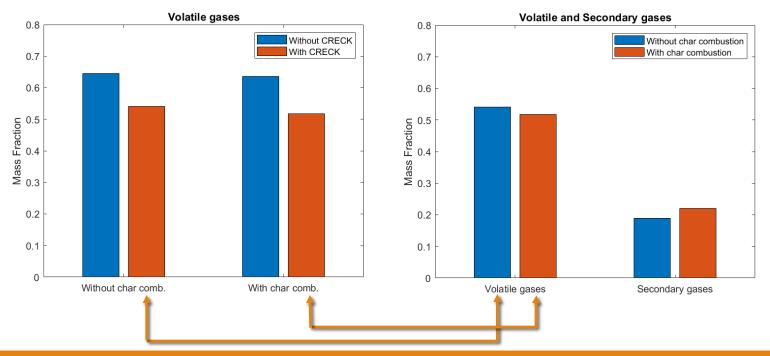
- Comparison of yields for Ranzi devolatilization
- Unlike the chemistry solver biomass has a distribution of temperature associated with CFD
- Note: The CFD is not truly conventional pyrolysis! Wouldn't be right to compare to the experiments

Char combustion

- Addition of char combustion with the Ranzi devolatilization mechanism
- •Some char consumption visible at the end of 15 seconds
- •The char left over matches the experimental results
- Early stage of autothermal pyrolysis
- Need longer simulations runs to get to autothermal operating conditions

Without oxygen


With oxygen


Secondary gas phase

•CRECK:

- 137 species
- 4533 reactions
- Residence time
 - Estimated to 1-2 seconds
- Importance
 - May be neglected for small case reactors, but will be crucial for large, plant scale reactors
 - Computational overhead with including in CFD: 15-20 times
- •Alternatives?

Bio-oil		
Levoglucosan	Propanoic acid	
Hydroxy acetaldehyde	Xylofuranose	
Glyoxal	Furfural	
Acetaldehyde	Ethanol	
5-(hydroxy methyl)-furfural	Acetic acid	
Propionaldehyde	Coumaryl alcohol	
Methanol	Phenol	
Formaldehyde	Sinapyl aldehyde	
Formic acid	Anisole	
Acrolein		

Summary: Biomass pyrolysis

- •Chemical kinetic mechanism: Devolatilization, char combustion, secondary gas phase
- •The zero-dimensional chemistry can be used to estimate yields based on the feedstock.
- The Ranzi devolatilization mechanism and char combustion was coupled with the hydrodynamics in mCFD demonstrating simulation capabilities.
- Secondary gas phase reactions may be superfluous for small scale reactors, meaning that the mechanism including Ranzi devolatilization and char combustion may be adequate for predicting yields.
- •For longer residence times, the secondary gas phase reactions will be needed.
- •Incorporating CRECK mechanism in mCFD is computationally expensive
- •Alternative methods, such as a reduces chemical mechanism or decoupling chemistry from hydrodynamic simulations may be required.

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office Award Number DE-EE0008326.