

Enriched finite element formulation for discontinuous electric field in electrohydrodynamic problems

Christian Narváez-Muñoz, Mohammad Hashemi, Pavel Ryzhakov, Jordi Pons-Prats, and Julio Marti

OUTLINE

- Introduction
 - Electrohydrodynamics
- Motivation
- Numerical method
- Results
- Conclusions

WHAT IS ELECTROHYDRODYNAMIC (EHD)

Electrohydrodynamic [EHD] of liquids is a transport phenomenon, which describes the motion of the liquids subjected to electric field.

(B)

electrospinning

electrospray

porous fibers

CHALLENGE..!!!

Find the OPERATIONAL PARAMETERS (onset voltage)

Modeling

FLUIDS

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = \nabla \cdot \sigma + \mathbf{f}$$

ELECTRIC FIELD

<u>leaky-dielectric model (Melcher and Taylor)</u>

$$\nabla \cdot (k\mathbf{E}) = 0$$

Electric force

$$\boldsymbol{\tau}^{e} = \varepsilon \left(\mathbf{E} \mathbf{E} - \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \mathbf{I} \right)$$

CHALLENGE..!!!

Sharp representation of the **discontinuous gradient** of the electric potential (electric field **E**)

Modeling the electro-mechanical coupling

Body force

$$\nabla \cdot \boldsymbol{\tau}^e = \nabla \cdot (\varepsilon \mathbf{E}) \mathbf{E} - \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \nabla \varepsilon$$

$$\nabla \cdot \mathbf{E} = 0$$

Since both the permittivity and conductivity are piecewise constant, one immediately sees that the **electric force is non-zero only in the vicinity of the interface.**

Modeling the electro-mechanical coupling

$$\int_{\Omega} \nabla s \cdot (\kappa \nabla \phi) \, d\Omega = 0$$

The **strong form** of the governing equations can be summarized as:

$$\nabla \cdot (k\nabla \phi) = 0 \qquad \text{in} \qquad \Omega$$

$$\phi = \widetilde{\phi} \qquad \text{on} \quad \partial \Omega_{elec,D}$$

$$\mathbf{n} \cdot (k\nabla \phi) = 0 \qquad \text{on} \quad \partial \Omega_{elec,N}$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \nabla \cdot \sigma + \mathbf{f} \qquad \text{in} \qquad \Omega$$

$$\nabla \cdot \mathbf{u} = 0 \qquad \text{in} \qquad \Omega$$

$$\mathbf{u}(\mathbf{x}, t) = \mathbf{u}_D \qquad \text{on} \quad \partial \Omega_{flow,D}$$

$$\mathbf{t}(\mathbf{x}, t) = \widetilde{\mathbf{t}} \qquad \text{on} \quad \partial \Omega_{flow,N}$$

$$[\![\mathbf{t}(\mathbf{x}, t)]\!] = -[\![\mathbf{n} \cdot \mathbb{T}_e]\!] + \gamma \kappa \mathbf{n} \qquad \text{on} \qquad \Gamma$$

$$\begin{split} \int_{\Omega} \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) \cdot \mathbf{w} d\Omega &= -\int_{\Omega} p \nabla \cdot \mathbf{w} d\Omega + \int_{\Omega} \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) : \nabla \mathbf{w} d\Omega \\ &- \int_{\Gamma} \left[\left[\epsilon (\mathbf{n} \cdot \mathbf{E}) \mathbf{E} - \frac{\epsilon}{2} (\mathbf{E} \cdot \mathbf{E}) \mathbf{n} \right] \right] \cdot \mathbf{w} d\Gamma + \int_{\Gamma} \gamma \kappa \mathbf{n} \cdot \mathbf{w} d\Gamma \end{split}$$

For <u>those elements that are not cut</u>, the source term that include the traction vector <u>(t)</u> is canceled out by compatibility and equilibrium condition between the neighboring elements

Finite element space

The main problem originates from the fact that **FEM** can represent continuous gradients only, while in the problem at hand gradient field passing across the material interface is no longer continuous

Enriched finite element space

discretization procedure

$$\phi^h(x) = \underbrace{\sum_{i \in e.n} N_i(x)\phi_i}_{standard} + \underbrace{\bar{N}(x)\phi^*}_{enriched}$$
 ONE DoF

$$p^{h}(\mathbf{x},t) = \underbrace{\sum_{i \in e.n} N_{i}(\mathbf{x}) p_{i}(t)}_{standard} + \underbrace{\sum_{i \in e.n} \bar{N}_{p,i}(\mathbf{x}) p_{i}^{*}(t)}_{enriched} \longrightarrow \underline{\text{THREE DoFs}}$$

In the implementation of the present work, the enriched DoFs associated to the discontinuities of the **EHD** problem are condensed at the elemental level

Two materials between horizontal electrodes in a square domain

Figure: planar test for bi-material problem. (a) Sketch of the problem. (b) Nonconforming mesh with element size h = 0.2, employed for standard FEM and E-FEM. (c) Approximation of the electric potential field for 1/Q ≈ 0 using E-FEM with the inclusion of inter-elemental D+ term in the tangent matrix

electric potential (\emptyset) distribution

electric field $(\nabla \emptyset)$ distribution

Two materials circular interface

Figure: Numerical contours of electric potential and electric force . (a) Q = R, (b) Q > R, and (c) Q < R

System	$\epsilon_1 \; (\mathrm{F/m})$	$\sigma_1 \; (\mathrm{S/m})$	$\epsilon_2~(\mathrm{F/m})$	$\sigma_2 \; (\mathrm{S/m})$
S1 (Q = R)	1	1	2	2
$S2 \; (Q>R)$	$2.66\epsilon_0$	2.67×10^{-12}	$3.24\epsilon_0$	1.06×10^{-11}
$S3 \; (Q < R)$	$3.24\epsilon_0$	1.06×10^{-11}	$2.66\epsilon_0$	2.67×10^{-12}

$$\mathcal{O} = \frac{\ln([\![\mathbf{n} \cdot \mathbb{T}_{e,2}]\!]/\ln([\![\mathbf{n} \cdot \mathbb{T}_{e,1}]\!])}{\ln(N_2/N_1)}$$

Ro/h ≈ 1.5 Ro/h ≈ 5.5 Ro/h ≈ 11

	error		
$\ln(N_2/N_1) -$	$ 1 - [\mathbb{T}_e]]/[\mathbb{T}_e^{ex}] $	\mathcal{O}	
Q = R			
-	0.221	-	
2	0.107	1.05	
4	0.02	1.21	
Q>R			
-	0.361	-	
2	0.131	1.462	
4	0.006	2.224	
$\boldsymbol{Q} < \boldsymbol{R}$			
-	0.193	-	
2	0.109	0.824	
4	0.003	2.59	

Benchmark case: Droplet deformation

Smeared interface approach has reasonably accurate solutions for Ro/h > 20, while E-FEM (sharp interface) solution on coarse mesh (Ro/h \approx 8) gives an approximate error of 2%.

1.0

Figure: Snapshots at different time steps of the deformed droplet, for R = 10.

Figure: Snapshots at different time steps of disk-type deformation (R = 0.1).

Overall, one can conclude that:

- The proposed E-FEM method accurately represents the discontinuous fields in EHD.
- The method is capable of dealing with a wide range of property ratios (liquid-liquid & gas-liquid).
- The proposed scheme is capable of providing accurate results for arbitrary interface orientation, exhibiting **second-order of accuracy.**

THIS WORK WAS SUPPORTED BY SEVERO OCHOA PROGRAMME (CEX2018-000797-S & PRE2020-096632) AND AMADEUS PROJECT (PGC2018-101655-B-I00) GRANT FUNDED BY THE SPANISH MINISTRY OF SCIENCE, INNOVATION AND UNIVERSITIES.

THANKS