

Autonomous Characterisation and Calibration via Evolutionary Simulation

Jack Sykes

PhD w/ Integrated Study Topological Design CDT School of Physics and Astronomy University of Birmingham

Collaborators: **Leonard Nicusan** & **Dominik Werner**Pl: **Dr. Kit Windows-Yule**Co-supervisor: **Dr. Tzany Kokalova Wheldon**EPSRC MAPP-funded Project

Why Simulate and Calibrate?

Compared to noisy experiments, simulations offer:

- Faster results
- Cheaper modifications
- More information
- Higher accuracy

If, and only if, they are **correctly calibrated** - otherwise the outputs cannot be trusted

- Leading project with IFPRI investigating current industrial simulation calibration strategies. Key findings:
 - No two companies use the same procedure
 - >20 instruments used... each with a 5-figure price tag

Conventional Calibration

ACCES Calibration

1) Run suitable set of test experiments

2) ACCES uses experimental data & a basic, uncalibrated simulation to autonomously "learn" the relevant parameters

DEM Calibration as an Optimisation Problem

- Choose experimental system to model
- II. Define a **cost function** to quantify difference between experiment and simulation
- III. Choose a suitable optimiser
- IV. Set goal to minimise error function (i.e. maximum agreement between simulation and experiment)
- V. Iterate towards minimum (i.e. find optimal DEM parameters)

Characterising DEM Particles

velocity vector fields.

Single Epoch

Every function evaluation is an entire simulation run

Gradient-based optimisers

■ T0s - 100s evaluations

Neural networks

◆ 10,000+ evaluations

Evolutionary algorithms

- Used to be 1,000+ evaluations
- State of the art 100s evaluations

Evolutionary Optimisers

are added.

The problem with evolutionary algorithms: lots of function evaluations

> Especially problematic when coupled to DEM

Utilise state-of-art CMA-ES algorithm, which adaptively changes as the cost function deforms

ACCES converges on the parameter values that minimise the error values. It evolves a family of solutions in epochs (**x**-axis) towards the fittest individuals.

Example ACCES Calibration

Efficient Parameter Space Exploration

regions

ACCES can calibrate virtually *any* parameters, in arbitrarily high dimensions

It is more precise, yet less computationally expensive than e.g. gridbased calibration

Interactive Example

- ACCES robustly handles tough calibration problems
- It can naturally "escape" deep false optimums
- The only free parameter is the family size - the number of simulations run per epoch
- Larger family size more global search, fewer epochs needed, more parallel computation
- Smaller family size fewer simulations, more epochs needed

Minimally-Invasive, Scalable Optimisation

As opposed to classic optimisation frameworks which need the simulation to be rewritten inside a function,
 ACCES accepts entire simulation scripts

• Straightforward calibration of already-developed simulations!

ACCES
Python
Library

Automatically parallelise input script

Thank you!

The ACCES framework would not have been possible without the continuous

support and help from a great Birmingham team:

- **Dr. Kit Windows-Yule**, supervisor
- Andrei Leonard Nicusan, collaborator & lead ACCES developer
- Dominik Werner, collaborator & DEM hero

Interested? Email me at:

→ jas653@student.bham.ac.uk

Dr. Kit Windows-Yule

Andrei Leonard Nicusan

Dominik Werner

