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Challenges in Petroleum Industry

Industrial Disaster: Deepwater Horizon explosion
Location: Gulf of Mexico, Louisiana, United States
Data: April 20, 2010

Death: 11

Injuries: 17

“the Chief Council’s team is certain that the
Macondo cement failed” (Chiet Counsel’s
Report, 2011, pgs 95 — 96)

Problem:

* The offshore oil rig Deepwater Horizon
experienced Gas Migration after
cementing

* [ead to loss of well control and/or blow
Photo credit: U.S. Coast Guard outs

Tao, C., Rosenbaum, E., Kutchko, B. G., & Massoudi, M. (2021). A brief review of gas migration in oilwell cement slurries. Energies, 14(9), 2369.
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Background - Well Cementing

Well Cementing

Process of placing a cement slurry in the annulus space between the
well casing and the surrounding formations

well depth 34 casing diameter

Primary function 1s to provide zonal isolation.
Designed to have a hydrostatic pressure higher than formation pressure
and lower than formation fracture pressure

Operation Environment N
- formation

High temperature & high pressure (200°C and 750 MPa in deep wells) g i

Weak or porous formations, corrosive fluids, formation gas |
Problems : == cement

Gas migration into wellbore cement ' e Slury

Permanent pathways can form m -
Obi ectives == sheath

Understanding the rheological properties of cement in oil well

applications

Comprehensive model for cement slurry

Important parameters that atfect the rheology of cement . e master frar T S

: . . : . Tao, C., Rosenbaum, E., Kutchko, B. G., & Massoudi, M. (2021). A brief
Understandmg the process of gas mlgrauon in the hydratmg cement review of gas migration in oilwell cement slurries. Energies, 14(9), 2369.
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Background - Well Cementing

Well Cementing

Process of placing a cement slurry in the annulus space between the
well casing and the surrounding formations

Primary function 1s to provide zonal isolation.

Designed to have a hydrostatic pressure higher than formation pressure
and lower than formation fracture pressure

Operation Environment Formation Cement Formation
, _ , Fluids &< Hydrostatic &€  Fracture
High temperature & high pressure (200°C and 750 MPa in deep wells) pressyre Pressure Pressure
Weak or porous formations, corrosive fluids, formation gas
Casing

Problems e
Gas migration into wellbore cement '
Permanent pathways can form

Objectives

Understanding the rheological properties of cement in oil well
applications

Comprehensive model for cement slurry
Important parameters that atfect the rheology of cement

) . . . . Tao, C., Rosenbaum, E., Kutchko, B. G., & Massoudi, M. (2021). A brief
Understandmg the process of gas migration in the hydratmg cement review of gas migration in oilwell cement slurries. Energies, 14(9), 2369.
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Well Cement Properties

Cement Physical Properties Cement Chemical Properties
Cement properties Value Mineral phase Chemical formula | Abbreviation
Cement powder density 3.15 g/cm3
Tricalcium silicate (Alite) Ca;Sio; 40-70%
Cement slurry density 1.442 g/cm?3
. . . . aco
e e Hie 0.1 to 100 ym Dicalcium silicate (Belite) Ca,Sio, C,S 15-45%
Compressive strength 20 - 40 Mpa Tricalcium aluminate (Aluminate) Ca;Al,0, CA 1-15%
Maximum solid concentration 0.65 Tetracalcium aluminoferrite (Ferrite) ~ Ca,AlO;, Ca,FeO; C,AF 0-18%
Reynolds number 2716-3971
Magnesium oxide (Periclase) MgO MgO 2%
Cross-section of a Cement Particle Calcium Oxide (Free lime) Cao Ca0 2%

MgO C4AF

( |

i i

C3S | |

i i

| |

c2s ! % !
| Cement  H,-rich water ~ Rapid dissolution of Early nucleation and Early development |

!\ cement component flocculation of of microstructure /!

Barron, 2012 N in water hydrated product s




Rheological Behavior of Non-Newtonian Fluids

Shear Thinning Shear Thickening Thixotrobic
(Pseudoplastic) (Dilatant) P
e Ketchup | e Cornstarch and e Printer ink

water mixture

e Viscosity increases e Viscosity decreases e Viscosity increases
e Viscosity decreases with increasing shear with stress over time with stress over time

with increasing shear rate
rate J J




Rheological Behavior of Non-Newtonian Fluids

Shear Thinning
(Pseudoplastic)

Mr stress

Constant shear rate

Rheopectic

Thixotropic




Rheology of Cement Slurry

Goals:
Develop a comprehensive rheological model for cement slurry
Determine important parameters that affect rheological behavior

Rheology of cement slurry:
Viscosity depends on the shear rate, particle concentration,...
Cement has a yield stress
Cement shows thixotropic behavior

Review of cement constitutive models In house constitutive model for cement slurry

Total stress: T =T,+T,
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Viscous stress: Shear rate

= 80 -_x ¢ - n 21m o N 2
& Tv = —pl + Ho 1-— d)_ (1 + A )[1 + a’trA1 ] A1 + 0(1A2 + a’2A1
@ m
£ 60 :
- i i Volume fraction Thixotropic behavior
& e ronertaw
40 ~—+— Casson T Q
& —*—gobertsonand Stiff Yleld Stress: Volume fraction -
oo e Y, Water to cement ratio  Shear rate
20 e Deker ' 2(p — /7
ma my (D~ Pperc) X (—175w/c + 137) el / 12 _ .
= = Vipulanandan ¢ (¢ - ¢) - for l_[ > yC
o ' : ' : T, = T +K || 2 |4 A
0 20 40 60 80 100 y 1/2 Aq 1

Shear rate (1/s) |HA1 |




Mathematical Model-Governing Equations

Conservation of mass
» _
> T div(pv) =0

p: density of cement slurry

v: velocity vector, div(v) = 0 for an isochoric motion Constitutive Relations
Conservation of linear momentum
d . 2
p— = dl‘@‘l‘ pb T, = —pl + uesr(P, A1)A1 + a143 + A4

d/dt: total time derivative, given by dd—? = % + [grad()]v
b: body force vector
T Cauchy stress tensor given by the constitutive equation

Conservation of angular momentum
T=T1"
Convection - diffusion equation
2 4 div(¢pv) =© { = —divN 2 - 2 520
ot N=N.+N,+ Np=—-a“¢pK . V(yp) —a“¢p°yK,V(nuerr) — DV

¢: volume fraction

f: diffusive particle flux
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Mathematical Model-Constitutive Relations

I. For thelviscous stress tensor T
T=T,+T,

T, yield stress — future work

T, viscous stress, which is dependent on shear rate, particle volume fraction, temperature, pressure, cement hydration, etc.

A modified second grade (Rivlin-Ericksen) fluid model is applied for viscous stress of cement slurry (Massoudi & Tran, 2016)
2

T, =—pl+ uerr(Pp,A1)A; + 14z + aAq (5)

p: pressure

¢: volume fraction
A,,: n-th order Rivlin-Ericksen tensors

where 4; = Vv + 7vT A, = 221

E + A117v + VvTAl

aq, a,: normal stress coefficients
ey effective viscosity, which is dependent on volume fraction (Krieger 1959) and shear rate

_B m
terr(d, A1) = py (1 — %) |1+ atrd;?]

Uo- Viscosity of the cement slurry without particles; ¢,,: maximum volume concentration of solids; 8, m: material parameters
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Mathematical Model - Constitutive Relations
I1. For the diffusive particle flux f

f = —divN (6)
N flux vector, related to the movement of the particles (Philips et al, 1992)
N = +N” +Nb = —az(]bzf/KﬂV(ln,ueff) —DV(p

spatially varying viscosity Brownian diffusive flux

D is the diffusion coefficient (diffusivity), which is the function of y and ¢

D(y,$) = n||A1*|| - Do[Ky + Ko(1 = $)?+K3(pm — $)*H(m — )]

(Bridges and Rajagopal 2006; Garboczi and Bentz 1992)

a: particle radus; K. and K,,: empirically coefficients; Dy: the diffusivity parameter

K;,K, and K;: fitting coefficients,H: Heaviside function, H(x) = 1 forx > 0, H(x) =0forx <0
Substitute two constitutive relations (5) (6) into convection-diffusion equation (4)
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Cement Slurry Model

Example 1: Steady Flow of a Cement Slurry

MODEL DESIGN Surface

Formation

= Constitutive cement model — cement flow at offshore
wellbore conditions kg

* Cement slurry modeled as non-Newtonian fluid

“ Viscosity depends on the shear rate and particle
concentration

* Study the impact of parameters on behavior of cement
slurry

OUTCOMES

* Parametric study results indicate that the following
significantly affect the velocity and volume fraction:

Formation

Cement Slurry
“ Angle of inclinati - . -

& .e © chna'ltlon 0 - ' Schematic diagram of cement slurry flow in an inclined channel
* Maximum packing fraction of cement particles

“ Pressure and gravity terms

s




Parametric Study

Effect of Inclination Angle, 6
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Parametric Study

Effect of maximum packing fraction ¢,,
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Parametric Study
Effect of K /K, Effect of m Effect of R, Effect of R,
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Cement Slurry Model

Example 2: Pulsating Poiseuille Flow of a Cement Slurry

Surface

= The motion is unsteady and in transient state

L
LV

o~
D

Formation

2ol L2

Well Casing

= The flow Is assumed to be one-dimensional
Cement Slurry

= The velocity and the volume fraction forms:

{ ¢ = p(r,t)

v=v(rt)e,
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Parametric Study

Effect of time cycles
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Parametric Study

Effect of m Effect of Pressure
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Simulations & Experiments

Wellbore Simulation Chamber
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Conclusions

Gas Migration in Well Cementing
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Cement Rheology Comprehensive Constitutive Model for Cement Slurry
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