

2022 NETL Multiphase Flow Science Workshop, August 2-3, 2022

Steady and Pulsating Flow of Cement Slurries

Chengcheng Tao, Ph.D.¹, Ellis Rosenbaum, Ph.D.², Barbara Kutchko, Ph.D.². and Mehrdad Massoudi, Ph.D.²

¹Assistant Professor, School of Construction Management Technology, Purdue University, tao133@purdue.edu

² Research Scientist, National Energy Technology Laboratory

Challenges in Petroleum Industry

Photo credit: U.S. Coast Guard

Tao, C., Rosenbaum, E., Kutchko, B. G., & Massoudi, M. (2021). A brief review of gas migration in oilwell cement slurries. *Energies*, 14(9), 2369.

Industrial Disaster: Deepwater Horizon explosion
Location: Gulf of Mexico, Louisiana, United States
Data: April 20, 2010
Death: 11
Injuries: 17

“the Chief Counsel’s team is certain that the Macondo cement failed” (Chief Counsel’s Report, 2011, pgs 95 – 96)

Problem:

- The offshore oil rig Deepwater Horizon experienced **Gas Migration** after cementing
- Lead to loss of well control and/or blow outs

Background - Well Cementing

Well Cementing

- Process of placing a cement slurry in the annulus space between the well casing and the surrounding formations
- Primary function is to provide zonal isolation.
- Designed to have a hydrostatic pressure higher than formation pressure and lower than formation fracture pressure

Operation Environment

- High temperature & high pressure (200°C and 150 MPa in deep wells)
- Weak or porous formations, corrosive fluids, formation gas

Problems

- Gas migration into wellbore cement
- Permanent pathways can form

Objectives

- Understanding the **rheological properties** of cement in oil well applications
 - **Comprehensive model** for cement slurry
 - **Important parameters** that affect the rheology of cement
- Understanding the process of **gas migration** in the hydrating cement

<http://www.bauchemie-tum.de/master-framework/data/dynamic/Image/tbz1e.gif>

Tao, C., Rosenbaum, E., Kutchko, B. G., & Massoudi, M. (2021). A brief review of gas migration in oilwell cement slurries. *Energies*, 14(9), 2369.

Background - Well Cementing

Well Cementing

- Process of placing a cement slurry in the annulus space between the well casing and the surrounding formations
- Primary function is to provide zonal isolation.
- Designed to have a hydrostatic pressure higher than formation pressure and lower than formation fracture pressure

Operation Environment

- High temperature & high pressure (200°C and 150 MPa in deep wells)
- Weak or porous formations, corrosive fluids, formation gas

Problems

- Gas migration into wellbore cement
- Permanent pathways can form

Objectives

- Understanding the **rheological properties** of cement in oil well applications
 - **Comprehensive model** for cement slurry
 - **Important parameters** that affect the rheology of cement
- Understanding the process of **gas migration** in the hydrating cement

Tao, C., Rosenbaum, E., Kutchko, B. G., & Massoudi, M. (2021). A brief review of gas migration in oilwell cement slurries. *Energies*, 14(9), 2369.

Well Cement Properties

Cement Physical Properties

Cement properties	Value
Cement powder density	3.15 g/cm ³
Cement slurry density	1.442 g/cm ³
Cement particle size	0.1 to 100 μm
Compressive strength	20 - 40 Mpa
Maximum solid concentration	0.65
Reynolds number	2716-3971

Cross-section of a Cement Particle

Cement Chemical Properties

Mineral phase	Chemical formula	Abbreviation	Percentage
Tricalcium silicate (Alite)	Ca_3SiO_5	C_3S	40-70%
Dicalcium silicate (Belite)	Ca_2SiO_4	C_2S	15-45%
Tricalcium aluminate (Aluminate)	$\text{Ca}_3\text{Al}_2\text{O}_6$	C_3A	1-15%
Tetracalcium aluminoferrite (Ferrite)	$\text{Ca}_2\text{AlO}_5, \text{Ca}_2\text{FeO}_5$	C_4AF	0-18%
Magnesium oxide (Periclase)	MgO	MgO	2%
Calcium Oxide (Free lime)	CaO	CaO	2%

Rheological Behavior of Non-Newtonian Fluids

Shear Thinning (Pseudoplastic)

- Ketchup

- Viscosity decreases with increasing shear rate

Shear Thickening (Dilatant)

- Cornstarch and water mixture

- Viscosity increases with increasing shear rate

Thixotropic

- Yogurt

- Viscosity decreases with stress over time

Rheopectic

- Printer ink

- Viscosity increases with stress over time

Rheological Behavior of Non-Newtonian Fluids

Shear Thinning (Pseudoplastic)

- Key features
- Viscosity with increasing shear rate

Shear Thickening (Dilatant)

- Key features
- Viscosity with increasing shear rate

Thixotropic

- Yogurt

Rheopectic

- Printer ink

Rheology of Cement Slurry

Goals:

- Develop a **comprehensive rheological model** for cement slurry
- Determine **important parameters** that affect rheological behavior

Rheology of cement slurry:

- Viscosity depends on the **shear rate, particle concentration,...**
- Cement has a **yield stress**
- Cement shows **thixotropic behavior**

Review of cement constitutive models

In house constitutive model for cement slurry

$$\text{Total stress: } T = T_v + T_y$$

$$\text{Viscous stress: } T_v = -pI + \mu_0 \left(1 - \frac{\phi}{\phi_m}\right)^{-\beta} (1 + \lambda^n) [1 + \alpha \text{tr} A_1^2]^m A_1 + \alpha_1 A_2 + \alpha_2 A_1^2$$

Volume fraction

Thixotropic behavior

$$\text{Yield stress: } T_y =$$

$$T_y = \left[\frac{m_1 \frac{\phi^2(\phi - \phi_{perc})}{\phi_m(\phi_m - \phi)} \times (-175w/c + 137)}{|\Pi_{A_1}|^{1/2}} + K |\Pi_{A_1}|^{\frac{n-1}{2}} \right] A_1 \quad \text{for } \Pi_{A_1}^{1/2} > \dot{\gamma}_c$$

3D

Mathematical Model-Governing Equations

- Conservation of mass

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{v}) = 0$$

ρ : density of cement slurry

\mathbf{v} : velocity vector, $\operatorname{div}(\mathbf{v}) = 0$ for an isochoric motion

- Conservation of linear momentum

$$\rho \frac{d\mathbf{v}}{dt} = \operatorname{div} \mathbf{T} + \rho \mathbf{b}$$

d/dt : total time derivative, given by $\frac{d(\cdot)}{dt} = \frac{\partial(\cdot)}{\partial t} + [\operatorname{grad}(\cdot)] \mathbf{v}$

\mathbf{b} : body force vector

\mathbf{T} : Cauchy stress tensor given by the constitutive equation

- Conservation of angular momentum

$$\mathbf{T} = \mathbf{T}^T$$

- Convection - diffusion equation

$$\frac{\partial \phi}{\partial t} + \operatorname{div}(\phi \mathbf{v}) = \mathbf{f}$$

ϕ : volume fraction

\mathbf{f} : diffusive particle flux

Constitutive Relations

$$\mathbf{T}_v = -p \mathbf{I} + \mu_{eff}(\phi, A_1) A_1 + \alpha_1 A_2 + \alpha_2 A_1^2$$

$$\begin{aligned} \mathbf{f} &= -\operatorname{div} \mathbf{N} \\ \mathbf{N} &= \mathbf{N}_c + \mathbf{N}_\mu + \mathbf{N}_b = -a^2 \phi K_c \nabla(\dot{\gamma} \phi) - a^2 \phi^2 \dot{\gamma} K_\mu \nabla(\ln \mu_{eff}) - D \nabla \phi \end{aligned}$$

Mathematical Model-Constitutive Relations

I. For the viscous stress tensor \mathbf{T}

$$\mathbf{T} = \mathbf{T}_y + \mathbf{T}_v$$

\mathbf{T}_y : yield stress – future work

\mathbf{T}_v : viscous stress, which is dependent on shear rate, particle volume fraction, temperature, pressure, cement hydration, etc.

A modified second grade (Rivlin-Ericksen) fluid model is applied for viscous stress of cement slurry (Massoudi & Tran, 2016)

$$\mathbf{T}_v = -p\mathbf{I} + \mu_{eff}(\phi, \mathbf{A}_1)\mathbf{A}_1 + \alpha_1\mathbf{A}_2 + \alpha_2\mathbf{A}_1^2 \quad (5)$$

p : pressure

ϕ : volume fraction

\mathbf{A}_n : n-th order Rivlin-Ericksen tensors

$$\text{where } \mathbf{A}_1 = \nabla\mathbf{v} + \nabla\mathbf{v}^T \quad \mathbf{A}_2 = \frac{d\mathbf{A}_1}{dt} + \mathbf{A}_1\nabla\mathbf{v} + \nabla\mathbf{v}^T\mathbf{A}_1$$

α_1, α_2 : normal stress coefficients

μ_{eff} : effective viscosity, which is dependent on volume fraction (Krieger 1959) and shear rate

$$\mu_{eff}(\phi, \mathbf{A}_1) = \mu_0 \left(1 - \frac{\phi}{\phi_m}\right)^{-\beta} [1 + \alpha \text{tr} \mathbf{A}_1^2]^m$$

μ_0 : viscosity of the cement slurry without particles; ϕ_m : maximum volume concentration of solids; β, m : material parameters

Mathematical Model - Constitutive Relations

II. For the **diffusive particle flux f**

$$f = -\operatorname{div}N \quad (6)$$

N : flux vector, related to the movement of the particles (Philips et al, 1992)

$$N = N_c + N_\mu + N_b = -a^2\phi K_c \nabla(\dot{\gamma}\phi) - a^2\phi^2 \dot{\gamma} K_\mu \nabla(\ln \mu_{eff}) - D \nabla\phi$$

particles collision **spatially varying viscosity** **Brownian diffusive flux**

D is the diffusion coefficient (diffusivity), which is the function of $\dot{\gamma}$ and ϕ

$$D(\dot{\gamma}, \phi) = \eta \|A_1\|^2 \cdot D_0 [K_1 + K_2(1 - \phi)^2 + K_3(\phi_m - \phi)^2 H(\phi_m - \phi)]$$

(Bridges and Rajagopal 2006; Garboczi and Bentz 1992)

a : particle radius; K_c and K_μ : empirically coefficients; D_0 : the diffusivity parameter

K_1, K_2 and K_3 : fitting coefficients, H : Heaviside function, $H(x) = 1$ for $x > 0$, $H(x) = 0$ for $x \leq 0$

Substitute two constitutive relations (5) (6) into convection-diffusion equation (4)

Cement Slurry Model

Example 1: Steady Flow of a Cement Slurry

MODEL DESIGN

- Constitutive cement model – cement flow at offshore wellbore conditions
- Cement slurry modeled as non-Newtonian fluid
- Viscosity depends on the shear rate and particle concentration
- Study the impact of parameters on behavior of cement slurry

OUTCOMES

- Parametric study results indicate that the following significantly affect the **velocity** and **volume fraction**:
 - Angle of inclination θ
 - Maximum packing fraction of cement particles
 - Pressure and gravity terms

Schematic diagram of cement slurry flow in an inclined channel

Parametric Study

Effect of Inclination Angle, θ

Parametric Study

Effect of maximum packing fraction ϕ_m

Parametric Study

Effect of K_c/K_μ

Effect of m

Effect of R_0

Effect of R_1

Cement Slurry Model

Example 2: Pulsating Poiseuille Flow of a Cement Slurry

- The motion is unsteady and in transient state
- The flow is assumed to be one-dimensional
- The velocity and the volume fraction forms:

$$\begin{cases} \phi = \phi(r, t) \\ v = v(r, t) \mathbf{e}_z \end{cases}$$

Parametric Study

Effect of time cycles

Distribution of velocity & volume fraction at different time cycles in the pipe

Parametric Study

Effect of m

Effect of Pressure

Simulations & Experiments

Channel Flow Air in Fluid Simulations

Wellbore Simulation Chamber

- Max 1500 psi (~depth 1850 ft)
- 20°C to 60°C

@ University of Pittsburgh

Conclusions

Gas Migration in Well Cementing

Cement Rheology

Comprehensive Constitutive Model for Cement Slurry

Viscous stress:

$$T_v = -pI + \mu_0 \left(1 - \frac{\phi}{\phi_m}\right)^{-\beta} (1 + \lambda^n) [1 + \alpha \text{tr} A_1^2]^m A_1 + \alpha_1 A_2 + \alpha_2 A_1^2$$

Yield stress:

$$T_y = \left[\frac{m_1 \frac{\phi^2 (\phi - \phi_{perc})}{\phi_m (\phi_m - \phi)} \times (-175w/c + 137)}{|\Pi_{A_1}|^{1/2}} + K |\Pi_{A_1}|^{\frac{n-1}{2}} \right] A_1$$

Parametric Study with CFD

Gas flow potential factor

Mitigate the Geotechnical Infrastructure Hazard

Acknowledgements

Department of Energy (DOE)

Oak Ridge Institute for Science and Education (ORISE)

American Petroleum Institute (API)

Colleagues and Collaborators @

Purdue University

National Energy Technology Laboratory

University of Pittsburgh

ExxonMobil

Publications

- [1] Tao, C., Rosenbaum, E., Kutchko, B., & Massoudi, M. (2021). Pulsating Poiseuille flow of a cement slurry. *International Journal of Non-Linear Mechanics*, 133, 103717.
- [2] Tao, C., Rosenbaum, E., Kutchko, B. G., & Massoudi, M. (2021). A brief review of gas migration in oilwell cement slurries. *Energies*, 14(9), 2369.
- [3] Tao, C., Kutchko, B., Rosenbaum, E, and Massoudi, M. (2020). A review of rheological modeling of cement slurry in oil well applications. *Energies*, 13 (3), 570.
- [4] Tao, C., Rosenbaum, E., Kutchko, B. G., and Massoudi, M. (2020). The importance of vane configuration on yield stress measurements of cement slurry (No. DOE/NETL-2020/2116). National Energy Technology Laboratory.
- [5] Mofakham, A., Tao, C., Ahmadi, G., Massoudi, M., Rosenbaum, E., and Kutchko, B. (2020). Computational modeling of oil well cementing and gas migration process, Fluids Engineering Division's Summer Meeting (FEDSM2020), the American Society of Mechanical Engineers (ASME), Orlando, FL.
- [6] Tao, C., Wu, W., and Massoudi, M (2019), Natural convection in a non-Newtonian fluid: effects of particle concentration. *Fluids*, 4 (4), 192.
- [7] Tao, C., Kutchko, B., Rosenbaum, E., Wu, W., and Massoudi, M. (2019). Steady flow of a cement slurry. *Energies*, 12 (13), 2604.
- [8] Tao, C., Kutchko, B., Rosenbaum, E., Kutchko, B., and Massoudi, M. (2019). Flow of a cement suspension in a pipe, 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting, National Energy Technology Laboratory, Pittsburgh, PA.
- [9] Tao, C., Rosenbaum, E., Kutchko, B., and Massoudi, M. (2019). Flow of a cement slurry modeled as a generalized second grade fluid, ASME-JSME-KSME Joint Fluids Engineering Conference 2019 (AJKFluids), the American Society of Mechanical Engineers (ASME), San Francisco, CA.
- [10] Tao, C., Kutchko, B., Rosenbaum, E., and Massoudi, M. (2019). Steady and transient flow of a cement slurry, Engineering Mechanics Institute Conference 2019 (EMI2019), the American Society of Civil Engineers (ASCE), California Institute of Technology, Pasadena, CA.
- [11] Tao, C., Rosenbaum, E., Kutchko, B., and Massoudi, M. (2019). Effects of shear-rate dependent viscosity on the flow of a cement slurry, Dynamics Days 2019, International Conference on Nonlinear Dynamics, Northwestern University, Evanston, IL.
- [12] Tao, C., Kutchko, B., and Massoudi, M. (2018). Numerical analysis for flow of a cement slurry, Mid-Atlantic Numerical Analysis Day (NA-Day 2018), Department of Mathematics, College of Science and Technology, Temple University, Philadelphia, PA.

Chengcheng Tao

Assistant Professor

School of Construction Management Technology

tao133@purdue.edu

polytechnic.purdue.edu

/

TechPurdue