

BUBBLE EXTRACTION AND ANALYSIS OF GROUP-A GAS-SOLID FLUIDIZED BEDS

A COMPARISON BETWEEN TWO-FLUID SIMULATIONS AND EXPERIMENTS

Yuan Yao¹, Chi-Wei Tsang¹, Chang Kai (Lance) Wu², Michael Molnar², Matthew Bishop², Quan Yuan³, Jörg Theuerkauf¹

¹Engineering & Process Science, Core R&D, The Dow Chemical Company, Lake Jackson, TX, USA

²Dow Performance Silicones, Process R&D, Engineering Sciences, Dow Silicones Corporation, Midland, MI, USA

³Packaging & Specialty Plastics and Hydrocarbons R&D, The Dow Chemical Company, Freeport, TX, USA

BUBBLING FLUIDIZED BED REACTORS ARE CRITICAL FOR MANY CHEMICAL PROCESSES

Fluidized bed technology is a critical reactor technology for multiple-billion-dollar businesses

across multiple sectors at Dow

Fluidization

→ Under appropriate conditions, a solid/fluid mixture behaves as fluid

Advantages of fluidized beds over packed bed reactors

- → Superior heat transfer: 5X to 10X better
- → Moves solid like a fluid: easy to add/remove particles w/o shutdown
- → Able to handle materials with a wide particle size distribution

Applications of fluidized beds

- → <u>Dow's patented fluidized catalytic dehydrogenation (FCDh) technology</u> (patent number: EP3455196B1)
- → Fluid catalytic cracking (FCC), coal combustion, biomass pyrolysis, polyolefin production & a lot more

Dow's patented FCDh configuration

BUBBLING DYNAMICS CONTROLS HEAT AND MASS TRANSFER OF BUBBLING FLUIDIZED BED

Goal of this work: develop an efficient bubble extraction algorithm for 3D fluidized bed simulations

- Experimental measurement techniques
 - Non-invasive: ECVT, MRI, X-ray tomography; Invasive: PSRI optical fiber bubble probes, FBRM, EasyViewer
- Bubble information is not readily available in CFD simulations
 - Some recent literature still focused on bubble detection in 2D simulations.
 - Existing methods are not capable of 3D bubble detection / reconstruction

Approximate Image Processing Method (AIPM)
(Li et al. 2019 CES)

Linear-time Connected-Component Labeling (Lu et al. 2017 CEJ)

Test cases:

- Case A: NETL BFB Challenge Problem (2010)
- Case B: 18.4-cm BFB at UC Boulder with glass beads

Comparison:

- Bubble size vs. radial position
- Bubble void fraction

CASE A: 3-FT NETL BUBBLING BED CHALLENGE PROBLEM (2010)^[1]

Probe circumferential locations (top view)

Experimental setup:

- Four ΔP transmitters
- Two PSRI optical fiber bubble probes
- FCC particles: SMD = $60 \mu m$, $\rho_p = 1490 \text{ kg/m}^3$

CASE A: COMPARISON OF BED DENSITY PROFILES & PRESSURE FLUCTUATIONS

- The averaged bed density profile and overall ΔP match with experiments
- The standard deviation of ΔP fluctuations exhibits up to 20% discrepancies
 - > Indicative of discrepancies in **bubble statistics** (size, velocity, frequency)!

A Two-step Bubble Extraction Algorithm Based on DBSCAN

Case A (12% Fines FCC, H = 8 ft, Ug = 2 ft/s)

Step 1: detect bubble region based on solid volume fraction distribution

A Two-step Bubble Extraction Algorithm Based on DBSCAN

Step 2: Individual bubble extraction using DBSCAN^[1] clustering algorithm

Bubble region (VF ≤ VF_{threshold})

Bubble size enlarged for visualization

[1] Ester, Kriegel, Sander, Xu (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining

CASE A: COMPARISON OF BUBBLE SIZE

- Simulation: $\Delta t = 1$ ms for 30s, data analysis: every 0.05s × 600 frames
 - Bubbles reconstructed using alphaShape function in MATLAB
 - > Sauter mean diameter computed from reconstructed geometry
- Experiment: bubble probe voltage signal converted to bubble size (Chew & Hrenya)^[1]
 - ➤ Voltage dip below threshold → bubble

$$V_{bbl} = L_{tip} / \Delta t_{lag} \rightarrow D_{bbl} = V_{bbl} \times \Delta t_{bbl}$$

CASE A: COMPARISON OF BUBBLE VOID FRACTION

- Bubble void fraction in simulations estimated by mimicking experiments
 - ▶ Gas volume fraction ≠ bubble void fraction
 - Gas volume fraction can be treated as "voltage signals"

Bubble void fraction = fraction of time the probe is in contact with a bubble (V<V_{threshold})

CASE B: 18.4-CM BUBBLING BED WITH GLASS BEADS (LAMARCHE 2016^[1])

Experimental setup (LaMarche 2016^[1]):

Microscopic image of glass beads

- The same PSRI bubble probe was used in Case A and B.
- Voltage signals were recorded for 30s at two heights:
 - \rightarrow H = 17.8 cm and 20.3 cm
- Incipient fluidization: $U_g \cong 3 U_{mf}$

Particle size (μm)	Superficial velocity (cm/s)	Particle density (kg/m³)	Static bed height (cm)
69	1.86	2500	24

CASE B: COMPARISON OF BUBBLE SIZE

Bubble size comparison:

- Bubbles are larger around r=0.5R, and smaller at the center and near wall in both TFM and experiments
- TFM predicts smaller bubbles
 - bubble size measured as **chord length** in experiments
 - but based on **D**₃₂ in 3D simulations

Gas streaming observed experimentally in beds with:

- (1) large H/D
- (2) less fine content
- (3) low superficial velocity^[1]

[1] Issangya, A., Knowlton, T., Karri, R., "Detection of Gas Bypassing due to Jet Streaming in Deep Fluidized Beds of Group A Particles", THE 12TH INTERNATIONAL CONFERENCE ON FLUIDIZATION (2007)

SUMMARY AND CONCLUSION

- Two-step bubble extraction / reconstruction algorithm for 3D CFD simulations
 - > (1) CDF-based thresholding + (2) DBSCAN-based labeling of individual bubble
 - > Fully-reconstructed actual bubble geometry provides better bubble statistics
- Algorithm was tested for two BFB cases and compared with experimental results
 - > Smaller bubbles found at the center and near wall for both TFM and experiments
 - Bubble sizes match well for case A, but deviate for case B (non-spherical bubbles with gas bypassing)
- Future directions
 - Compute bubble frequency and velocity by matching two frames via cross-correlation
 - > Point probe approach (mimicking voltage signal) to estimate frequency and velocity
- Acknowledgement
 - > Yicheng Hu (Dow): discussion on image processing
 - Kevin Kellogg (Dow): providing details on Case B setup
 - > Allan Issangya (PSRI): providing bubble data for Case A

Seek

Together^m