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INJECTION INFLUENCES ENGINE PERFORMANCE!]

Detailed injection simulations are too expensive at the industry level

Emulated flowfields at orifice exit for static-needle-lift Large Eddy Simulations at steady statel?!:
» Gaseous volume fraction (a)

: . i ' Fuel: n-Dodecane - P;,; = 0.0013 bar
« Velocity components (u, v, w) Machine Learning sat
e models emulate internal 1500 bar
* Liquid mass (m;) flow fields at orifice exit injector

- Emulated flowfields needle
coupled with Lagrangian outer chamber
spray simulations using
static one-way coupling

-
"y

ALPHA
00 02 04 06 08 10

A-M1 injector
Side-oriented single-hole

injeCtor geometry CFD Simulation ML Emulator
1400 — 2000 CPU-hours per
[1] Torelli, Pei, Zhang, Som, Communications Engineering, 2022 10 us of simulated timel®!
romemenmenne 121 Mondal, Torelli, Lusch, Milan, Magnotti, SAE Technical Paper 2021-01-0550, 2021 Argonne &

maeas sy snesss e ¢ [3] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020




EMULATOR FRAMEWORK

Three phases to deconstruct the emulator formulation

——— I
I| 1. Training Data Generation || 2. Regression Modeling 3. Emulator Formulation
: |
: |
| > , Input Output [ New design settings ]
: Subd f | I e
ubdomain for emulation I Predict the
: Flowfields at orifice exit |1 —@ reduced
- I P1 @ — space
' l R @ -z
; ! ® ® z =R (P,t)
| I t ‘—’
: [ — Apply
. | : . reconstruction
Reduced-Order Modeling Learn the relationship L algorithm
between the design ' §
Compression parameters (P) and reduced -
— Diatent space (z):
.., z€R R: (P, t) — z AN

81 snapshots per CFD case extracted at the orifice exit between
t = 20-40 us, for steady-state flow conditions with static needle lift.
Each snapshot contains 4,214 grid points

[1] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020 Argonne &




DESIGN OF EXPERIMENTS (DOE)

Input space of parameters that affect cavitation is efficiently explored

Design Parameters "
Needle lift, § [um] 15 400 [1] %2‘”5 2075 .
Fuel viscosity, y= [(Ns) /m?2]  2.88x104 1.51x103 @ =
Level of dissolved gas Yy, [-] ~ 1.0x107  1.0x103 @ 0 @ weo WO mo B
= Design of Experiments (DoE) 7 ”.*i. ,:':. | o
. . . %ee .° ¢
U Variant of Latin Hypercube Sampling Y0800l o ¢ oo | 000 0_899_'. ..
160 samples in total in 3-D design parameter space 0
0.28 ':;“'. -.‘.1 0.288 0288’
* The blue dots (55) represent operating conditions seen Fheo 2075000 Paneowse a0 M7
during training, and the red dots (5) correspond to new S aweery
operating conditions (test cases) 5 [ SARN
ral o’ ;
The test cases are chosen to encompass the § SRETCIN B
different flow structures of the gas phase in the h B, RPN B LAY R
design space through input sensitivity analysis TNeedlo ift e 3 logio(Yee)

[1] Guo, Torelli et al., SAE Int. J. Advances & Curr. Prac. in Mobility, 2020
[2] Magnotti and Som, ASME ICEF2019-7269, 2019
() ENERGY STsomims e ity [3] Battistoni et al., Atomization and Sprays 25(6), 2015 Argonne &
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EMULATOR FRAMEWORK

Three phases to deconstruct the emulator formulation

1. Training Data Generation 2. Regression Modeling 3. Emulator Formulation
Input Output [ New design settings ]
\Subdomain for emulation ' Predict the
Flowfields at orifice exit —@ reduced
= P- @ — space
R IO rz
‘ Z’ =R (P,, t)
NG £ a? t @ :
Casel1_ _ _Casen — Apply
I : , reconstruction
| Reduced-Order Modeling | Learn the relationship L algorithm
I | between the design N
: Compression | parameters (P) and reduced
I' — Dlatent ! space (z):
| z€R ! R: (P, t) > z AN

81 snapshots per CFD case extracted at the orifice exit.
Each snapshot contains 4,214 grid points

MENT OF Argonne National Laboratory is a
us D;TEymﬁa‘h?éé"fﬁéﬁ‘m‘cz [1] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020 Argonneo




AUTOENCODER FRAMEWORK

Using deep learning to reduce the dimensionality of flowfields

Reconstructed

Autoencoders:
Reduce the dimension of the flowfields

!

Make the problem of predicting flowfields for
unknown operating conditions tractable

A reduced representation
of the input

Vs
“ncoder Decoder > = Other dimensionality reduction

techniques like Proper Orthogonal

Hyperparameters (grid-search-based) Decomposition (POD) were also explored !
Hyperparameter Value
Number of hidden layers 10 (5 each for 75, and Ty,.) " Deep aUtoenCOderS are Chosen as the
Tenc [400, 200, 100, 50, 25] preferred dimensionality reduction tool
Taec 125, 20, 100, 200, 4001 because the complex non-linear
Deoge 8 (for a, u, w, my ), 20 (for v) . . .
Optimizer algorithm Adam transformations allow high representation
Learning rate of optimizer 2> 10° power with low latent space dimensions
Number of epochs 1000
Batch size 25

I Reoularizati . 7 10° [1] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020
2 Reguarization parametet [2] Mondal et al., SAE Technical Paper 2021-01-0550, 2020.
[3] Milan et al., AIAA SciTech Paper 2021-1016, 2021.
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REDUCED SPACE CAPTURES FLOW COMPLEXITIES

u [m/s]

Test Case at t = 20.00 us

Reconstructed Truth

Reduced

Space

a _

Test Case at t = 20.00 us

OCO0O0O0O0O0O0O00O0OH
orRrNVwhrULoNmLO

50+
t
32
>
_50_
x{um]
1.0
0.9
50+ 0.8
0.7
=~ 0.6
£ 05
= 0.4
0.3
—50- 0.2
0.1
0.0
x[um]
4
2_
N 0+ R o
Y [ ]
_2_
L] L] °
—4- T T T T T T T

Component

Errors averaged
over 5 test cases

NERGY

. DEPARTMENT OF _ Argonne National Laboratory is a
U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

ylum]

ylum]

x[um]

Component

v [m/s]

Test Case at t = 20.00 us 80.0
' 64.0
504 48.0
32.0
= 16.0
g. 0+ 0.0
= -16.0
-32.0
—50- -48.0
-64.0
T T T -80.0
-50 0 50
x[um]
80.0
64.0
504 48.0
32.0
= 16.0
§. 0+ 0.0
= -16.0
32.0
—50- 48.0
-64.0
T T T -80.0
-50 0 50
x[um]
4
2_
® o0 ° . e o
LIS ° °
N 07 3 ° ° 3
°® ° .
_2-
_4 T T T T T T T T T T
2 4 6 8101214161820

Component

ylum]

ylum]

w [m/s]

Test Case at t = 20.00 us

xlum]

-270.0
-308.0
-346.0
-384.0
-422.0
-460.0
-498.0
-536.0
-574.0
-612.0
-650.0

-270.0
-308.0
-346.0
-384.0
-422.0
-460.0
-498.0
-536.0
-574.0
-612.0
-650.0

Component

Reconstruction error of time-averaged flowfields

Error

2%

1%

8%

1% 1%

ylum]

ylum]

m[ug]

Test Case att = 20.00 us 1e—4

7.200
6.301
5.402
4.502
3.603
2.704
1.805
0.905

x[um]

0.006

le—4

7.200
6.301
5.402
4.502
3.603
2.704
1.805
0.905

0.006

Component

Demonstrations

shown for Case 51

Argonne &

NATIONAL LABORATORY



EMULATOR FRAMEWORK

Three phases to deconstruct the emulator formulation

r—-— - = - - - - - TS S e I
1. Training Data Generation : 2. Regression Modeling 3. Emulator Formulation |!
I
I I
I Input Output [ New design settings ] |
I I
Subdomain for emulation ! : l

) g _ ® Predict the
Flowfields at orifice exit : —@ reduced :

- P

I @ R ® . space |
| @ ° Z=R(P,t) |
(NG AN A : t @— I
I
Case1 ' Casen | — Apply |,
I : , reconstruction |,
Reduced-Order Modeling : Learn the relationship L algorithm |,
: between the design ) :
Compression | | parameters (P) and reduced I
—> Diatent I space (z): I
”., zeR : R:(P,t) —> z AN |
I

81 snapshots per CFD case extracted at the orifice exit.
Each snapshot contains 4,214 grid points

MENT OF _ Argonne National Laboratory is a . . . . .
e B [1] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020 Argonne &




REGRESSION AND EMULATION PERFORMANCE

Deep Learning to relate design parameters to reduced space

The regression model is another deep neural
network that maps the design variables

and time to the reduced dimensional latent space

X000
SN

L_) \::'

Hyperparameters > 550
Hyperparameter Value 8 ZE;
Number of hidden layers 4
Tene [8, 16, 32, 32]
Optimizer algorithm Adam E m U I ated
Learning rate of optimizer 1 x10* _ : .
§ Pre-trained flowfield of

umber of epochs 500 4

Batch size 25 deCOder Inte reSt
L, Regularization parameter 2 %107

1 O ;:.‘f"“’i_\‘ U.s. DEPARTMENT OF _ Argonne National Laboratory is a Ar On ne °
)] U.S. Department of Energy laboratory
AN ENERGY managed by UChicago Argonne, LLC.
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PREDICTIONS OF TIME-AVERAGED FLOWFIELDS

o [-] u [m/s] m/s] w [m/s] my[pg]

Test Case at t = 20.00 us Test Case at t = 20.00 us = = = _
1.0 M 210.0 Test Case at t = 20.00 us 80.0 Test Case at t = 20.00 us 270.0 Test Case at t = 20.00 us 1137.2400
- 0.9 193.0 ’ 64.0 -308.0 6301
- 207 0.8 1760 50- 48.0 50- -346.0 :
= _ 8-2 _ %Zg-o 32.0 384.0 5.402
rud £ oo E 125-8 T 160 ¢ 4220 F 4.502
- 3 23 23 07 00 3 0 -460.0 3 3.603
> 0.4 > 108.0 160 = 498.0 = >
0.3 91.0 704
: : -32.0 536.0 1805
-50- 0.2 74.0 _50- -48.0  —50- 574.0 '
8-(1) %'3 -64.0 -612.0 0.905
50 0 50 ' : 7SR S -80.0 -650.0 0.006
go] x[um] x[um] x[um] x[um]
le—4
o 1.0 210.0 80.0 -270.0 7200
=2 64.0 -308.0
0.9 193.0 6.301
© 50- 48.0 -346.0
0.8 176.0 5 402
= L 0.7 159.0 32.0 -384.0 .
O = _ 06 — 1220 T 160 4220 g 4,502
> 3 § 05 § 1250 5 O- 0.0 3 -460.0 3 3.603
L =~ = 04 = 1080 > 160 > -498.0 > 2.704
N 0.3 91.0 32,0 -536.0 1805
(] 0.2 74.0  —50- -48.0 574.0 L805
E 0.1 57.0 -64.0 -612.0 .
0.0 40.0 TR = -80.0 -650.0 0.006
- x[um] x[um] x[um] x[um]
- le—4
1.0 210.0 80.0 __.2)’(7)3'8 7.200
© 0.9 193.0 64.0 _346:0 6.301
‘U — 06 = 1420 — 16.0 g IS ’
— IS S IS ] 3 —460 0 3 3.603
3 05 3 1250 3 © 0.0 = 4980 =
=) < o = 1080 = -16.0 2300 2.704
E 03 91.0 32.0 2740 1.805
L 0.1 09 64.0 650.0 , 0.006
40.0 . ; . -80.0 _ { : 50 0 '
x[um] x[um] x[um] x[um] x[um]

Emulation error of time-averaged flowfields

Errors averaged Demonstrations
over 5 testcases [l [ I A IR ] shown for Case 51

(o) (0] (o) (o) (0]
ﬁ"E""EFY UL Bepariment of Enarey Mboratory Error 8 /0 2 /0 2 /0 2 /0 2 /0 Argonne o

managed by UChicago Argonne, LLC. NATIONAL LABORATORY




APPLICATION OF EMULATED FLOWFIELDS

Injector-exit predictions to study the spray and combustion behavior

Fuel Temperature Fuel Pressure Chamber Temperature Chamber Density

Fuel
[K] [bar] [K] [kg/m°]
n-dodecane 323 1500 900 22.8
Model Set-up
Software CONVERGE
Parcel Initialization  Static coupling, LVF threshold = 0.1, TKE = 3000 m2/s2 [1]
Spray breakup KH-RT, No collisions
Turbulence RANS, RNG k-¢
. UFPV — 4D tabulation (x, ¢, Z'2,Z) 2 |
Combustion LLNL mechanism (2,755 species + 11,173 reactions) : F—
2 mm base grid size e T
Mesh spacing 250 pm min grid size (AMR + Embedding)
Peak cell count: 940,000 cells it
~20 core-hours per 10 ys of simulated time

Run time Max convective-based CFL = 1.0, dt ~ 1e-07 s

e v cemreerzer s ot ooy [1] Nocivelli et al., ASME ICEF2019-7258, 2019
{2JENERGY Jiimiiihip i [2] Nunno et al. AEC, 2020

Argonne &




APPLICATION OF EMULATED FLOWFIELDS

Accurate spray combustion predictions at a fraction of the cost

Injection Map from CFD (“Truth”) Injection Map from Emulator
Time ASOI: 0.000 ms Time ASOI: 0.000 ms

Droplet Radius [pm] Temperature [K]

Droplet Radius [pm] Temperature [K]

] I ] C ee—— I ! I ; — |
25 50 84 800 1100 1500 1800 84 800 1100 1500 1800

— 2 million times less ex

Liquid Penetration [mm]

30 F e N . 2000 0.2
20 40 <
P 1500 o1

,/ 20 / L]
10 i/ --- True ! -=- True + True + True

/ -- Emulated 0 -- Emulated 1000 - Emulated - Emulated
% 250 500 750 0 250 500 750 0 250 500 750 000250 500 750

time [us] time [us] time [us] time [us]
8 (ENERGY Ihteity [1] Mondal, Torelli, Lusch, Milan, Magnotti, SAE World Congress, 2021

Error < 4%

Vapor Penetration [mm]

Error < 1%

60

Max Temperature [K]

Error < 2%

Heat Release Rate [MJ/s]

Error < 2%

Argonne &




NEED FOR TRANSFER LEARNING!]

Addressing data scarcity in transient injection simulations

[ e e e e e

' Typical turn-around time i Need to accelerate Transient injection

. internal flow simulations simulations are

| In.ternallflow _ Englr?e i ‘ to have comparable turn expensive = Scarcity of

i simulations | simulations | around time with engine data for training machine
L~ ~ simulations learning models

i\ weeks days i

Expedite training for transient injector simulations using transfer learning

Freeze

Time: 0.195 ms

Moving-needle
simulations

Static-Needle (Target domain)

simulations
(Source domain)

Argonne &



DESIGN OF EXPERIMENTS (DOE)

Input space of parameters that affect cavitation is efficiently explored

Needle lift, § [um] 15 400  m FLL Y
Fuel viscosity, ur [(N s) /m?] 2.88x104 1.51x103 @ 2 5’ o 480 ;‘60

Time ASOI [us]

. ) . 5
Level of dissolved gas Yy, [-] 1.0x10 1.0x10 [3] Needle lift profilel’

-3
: A ¢ Space-filling Latin
_al ® | Hypercube samples
~ o o
= [
=Y |
g i ¢ Training
—6r A » Validation X 0
. ® Test '40,0/ ?Encoder
_7- 1 1 ® 1 .I 1 4214
050 075 1.00 1.25 1.50
- 2 10~
Hr [N-s/m”] 8 Weights and biases of the autoencoder framework
11 Samp|es in total in 2-D design parameter space initialized from the trained static needle autoencoder

[1] Guo, Torelli et al., SAE Int. J. Advances & Curr. Prac. in Mobility, 2020
[2] Magnotti and Som, ASME ICEF2019-7269, 2019
[3] Battistoni et al., Atomization and Sprays 25(6), 2015 ArgonneO




IMPACT OF TRANSFER LEARNING

Performance evaluated on reconstruction error for total void fraction

(a) Jdru =49um (b) dry = 101um (¢) & =200um (d) Jérp = 101um (e) b6rp =49um 6RU
Y & \x 0s iy Needle lift during
Truth £ o ramp-up phase
(CFD) = o 5
Needle lift during
(£) ramp-down phase
Reconstructed 5,
with transfer § o
learning "0
(k)
Reconstructed 5o
without transfer £ ,
learning " _50- |
=50 0 50 -50 0 50 0.0
x[um] x[um]
Reconstruction 0.125¢ — Without Tt « Transfer Learning results in better
error - reconstruction performance

* ~5% reduction in e when transfer
learning was employed
Ramp-up Ramp-down

50 100 150 200 250 300 350 400 450 500 550 600 Arggﬂﬂﬁ.ﬁu
Needle Lift [um]




IMPROVING TRANSIENT INJECTION PREDICTIONS

Building upon the static needle regression framework
The regression model is another deep neural

@ L o, : .
® + @=~t network that maps the design variables
«‘ZZ n u
s :} 0 and to the reduced dimensional latent space
I ! @)
' up | b ) Zy ~ 7N
P [ S “ 7 1.0
i Vv, / ) Zs5 AR 0.9
/ R o7
. . o N® G — < 0
Adding new input . L e SAWIN Y 03
. @ 9 (e | on ) '
layer to incorporate femmmee- 50 SR S 01
changeininput ~ & i , Pre-trained 100 NS\ v S Xl
1 . Q (D 1
space /// 1 decoder for static 400 Emulated static
1 \\\\;74;;; z | needle emulator 214 needle flowfield
AN 4
; ” Zy i 10
Hr 5 = 0.8
Zg | _
7t 9 0.6
Yn, SN\ o ON® % 0.4
7 NP 2Ne | FAN 0.2
k A\ 7 ? v k0 .
® % | 100 ~50 0 50
1
I : Transfer-learned 200 © Xlum]
Freeze a few Retrain last few hidden layers d der for t ient 400 7 Emulated transient
initial hidden layers  with transient simulation data ecoder for transien 4,214 dle flowficld
ENERGY S5 needle emulator needle tiowne




IMPROVING TRANSIENT INJECTION PREDICTIONS

Performance evaluated on reconstruction error for total void fraction

0.3 11
- 11
L I 1
i 11
11
- I
0.2- : I
o 1l
W | i
0.1~ :
TS —— With TL
: L —— without TL
0.0 L

46 101157 188'132 77 21
Needle Lift [um]

» 3% reduction in average emulation
error over time

* A peak reduction of 20% in emulation
error before the end of ramp-up phase

(a) 6 = 141pum
1.0

Truth - 06 T 06
(CFD) < 04 2 0.4
0.2 0.2
50 0 50 00 50 0 50 00

X[um] X[um]

(d) (e)

Emulated £=0078 ¢ £=0078 ¢
. 0.8 50 0.8
With g 06 g . 0.6
Transfer = 02 >_s0 05
Learning 0.0 5ot 5 00

x[um] x[um]

(8) (h)
Emulated 1.0 ee=0214
. 50 0.8 50 0.8
Without = 06 E 0.6
3 0 04 = O 0.4
Transfer >_, 02 >_so P
Learnin 50 0 50 OO “50 0 50 00
g
x[um] x[um]

(b) 6 =163um

(c) 6 =175um

1.0

» Transfer Learning from static needle

simulations helps in improving the predictions
of total void fraction field for transient injection
conditions.

= Maximum achievable speedup ~ 38 million

Argonne &



APPLICATION OF EMULATED FLOWFIELDS

Use of emulated transient injection maps
Injection Map from CFD (“Truth”) Injection Map from GP-based Emulator

Time ASOI: 0.000 ms Droplet Radius [um] Time ASOI: 0.000 ms Droplet Radius [um]
1 25 50 84 1 25 50 84

38 million times less expensive

Temperature [K] Temperature [K]

800 1200 1600 2000 800 1200 1600 2000
Liquid Penetration [mm] Vapor Penetration [mm] Max Temperature [K] Heat Release Rate [MJ/s]
Error < 1% Error <1% Error <1% Error <1%
40 e 0.3
40 R < 2000/
.30 8 = d = 0
c I g g_ §02
£ / A =
= 20 3 200 ,iJ 1500 z
- 10 ,/, ---- Truth ','/ ---- Truth © Truth T Truth
/ ---- Emulated oK ~7-: Emulated = 1000 Emulated Emulated
% 200 400 600 0 200 400 600 0 250 500 750 1000 000250 500 750 1000
) time [us] time [us] time [us] time [us]
18] GENERGY (i sin
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THANK YOU

Contact information:
Roberto Torelli, PhD: rtorelli@anl.qov
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