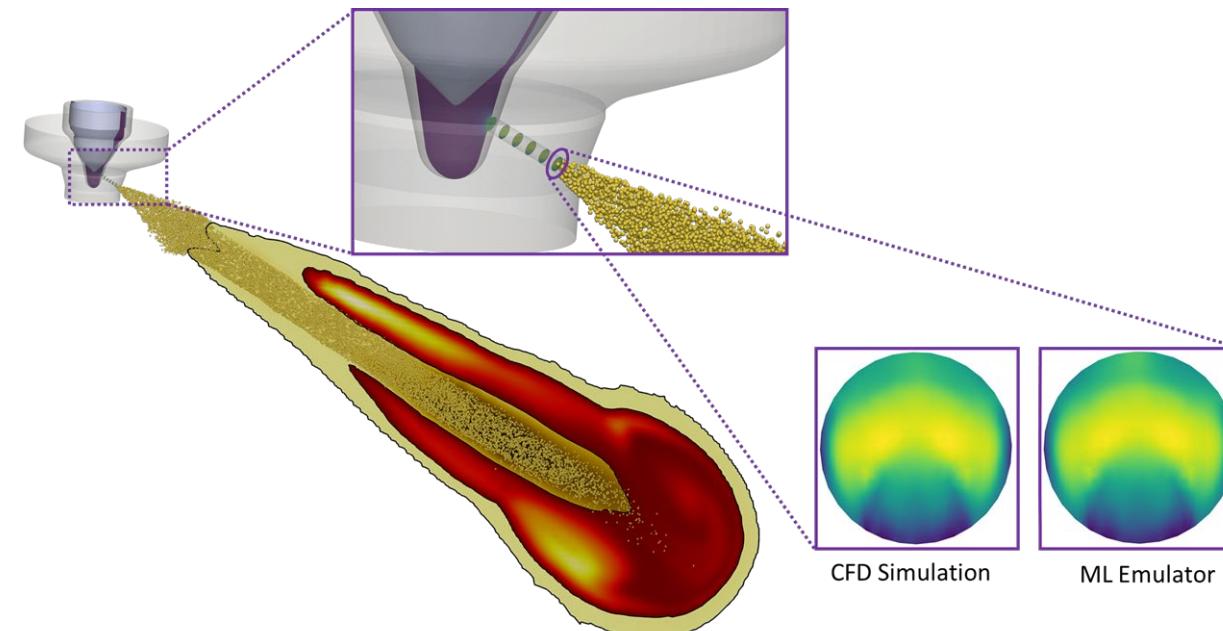


ENABLING PREDICTIVE SIMULATIONS OF REACTING MULTIPHASE FLOWS VIA DATA-DRIVEN EMULATION

R. Torelli

Senior Research Scientist

Transportation & Power Systems Division, Argonne National Laboratory – Lemont, IL, USA



ACKNOWLEDGEMENTS

Sponsors

- Argonne's Laboratory Directed Research and Development (LDRD) program

Team members

- Roberto Torelli – Lead PI, Senior Research Scientist, Argonne National Laboratory
- Bethany Lusch – Co-PI, Computer Scientist, Argonne National Laboratory
- Gina M. Magnotti – Co-PI, Senior Research Scientist (*formerly at Argonne*)
- Sudeepa Mondal – Main Contributor, Postdoctoral Researcher (*formerly at Argonne*)

Computing resources

- Laboratory Computing Resource Center: Bebop HPC Cluster
- Argonne Leadership Computing Facility: Theta Supercomputer

Industry partners

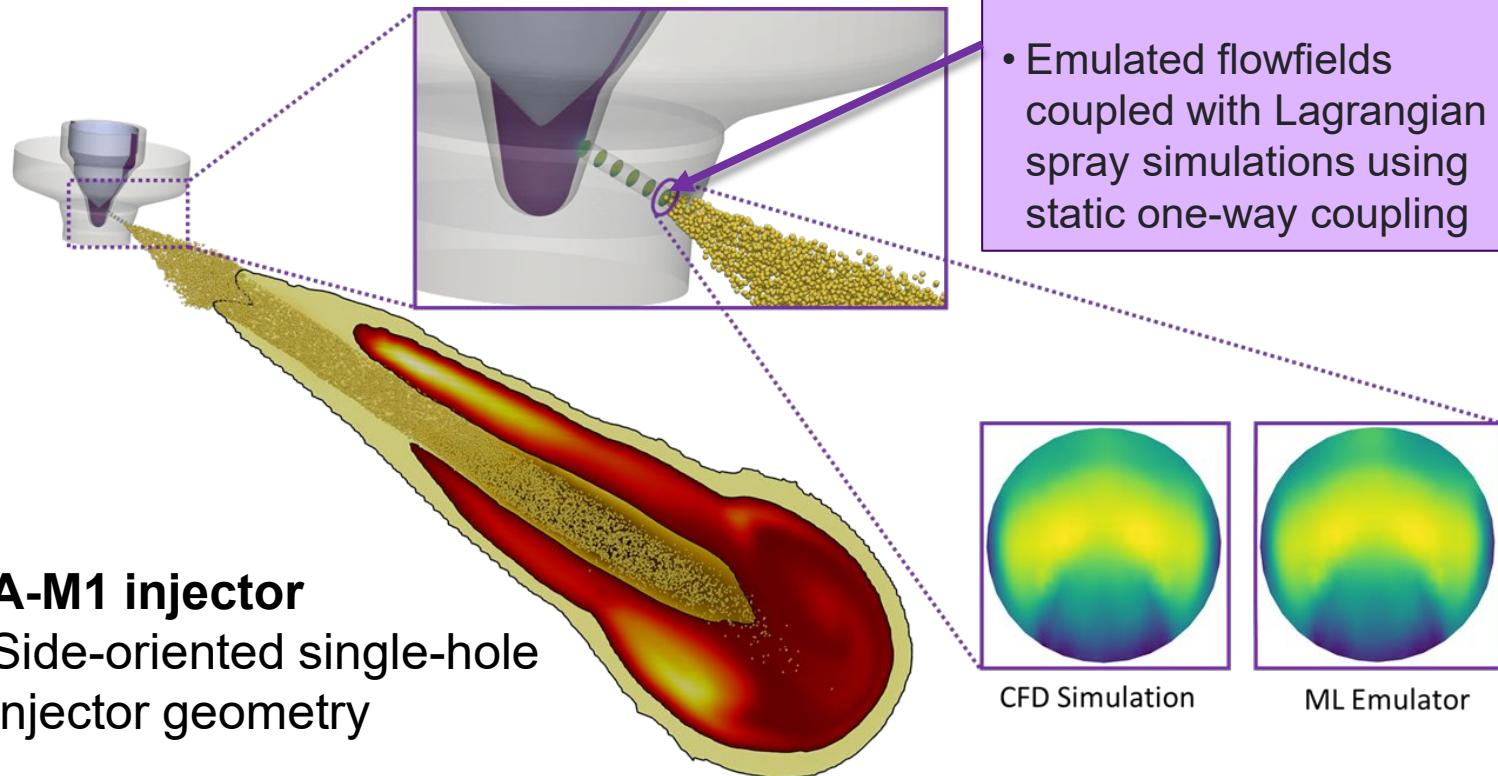
- Convergent Science Inc. for licensing support

INJECTION INFLUENCES ENGINE PERFORMANCE^[1]

Detailed injection simulations are too expensive at the industry level

Emulated flowfields at orifice exit for static-needle-lift Large Eddy Simulations at steady state^[2]:

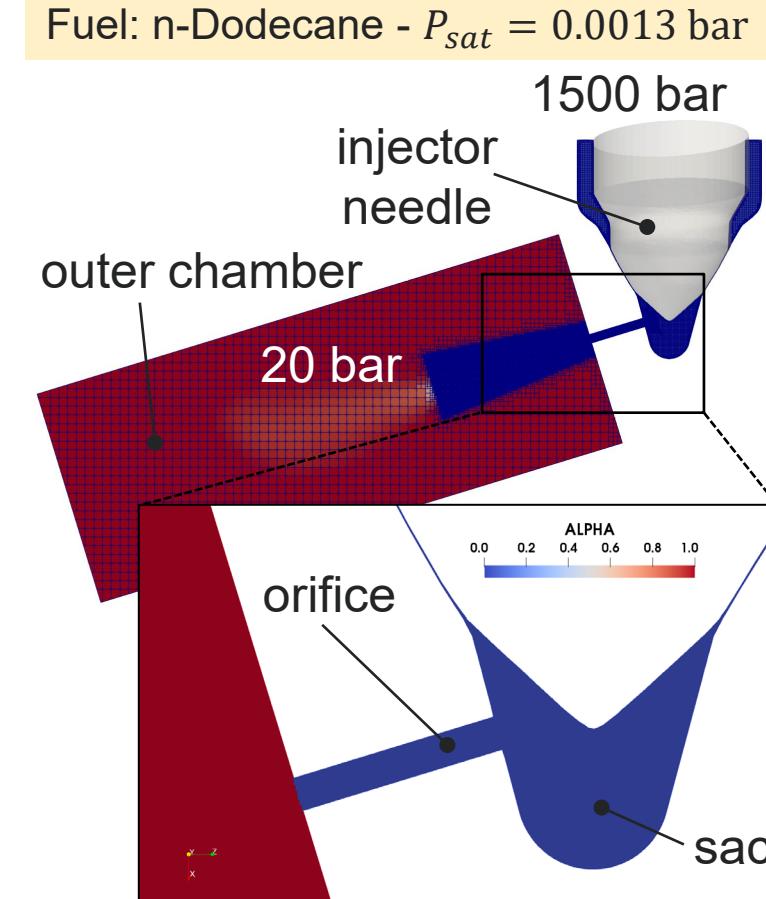
- Gaseous volume fraction (α)
- Velocity components (u, v, w)
- Liquid mass (m_l)



A-M1 injector

Side-oriented single-hole
injector geometry

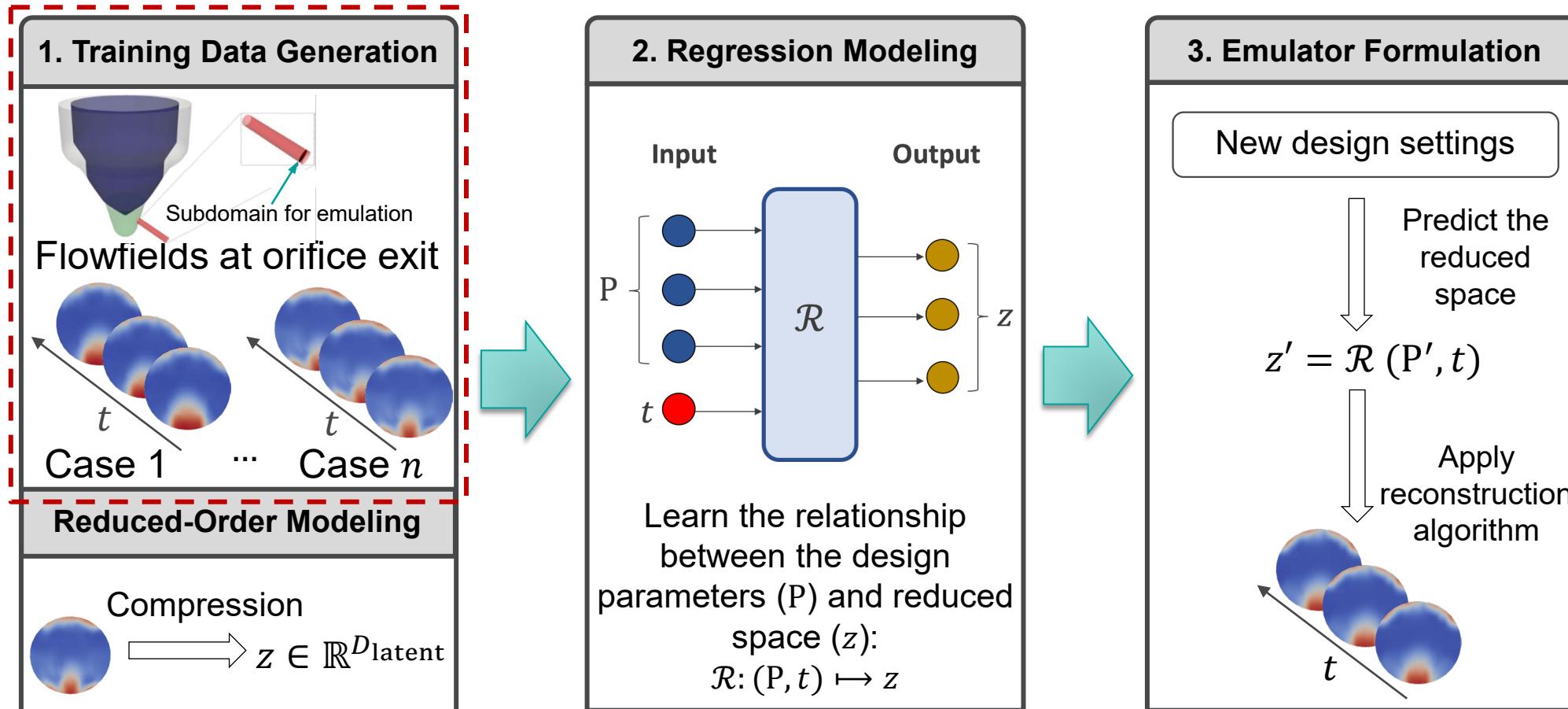
- Machine Learning models emulate internal flow fields at orifice exit
- Emulated flowfields coupled with Lagrangian spray simulations using static one-way coupling



1400 – 2000 CPU-hours per
10 μ s of simulated time^[3]

EMULATOR FRAMEWORK

Three phases to deconstruct the emulator formulation



81 snapshots per CFD case extracted at the **orifice exit** between $t = 20-40 \mu\text{s}$, for steady-state flow conditions with static needle lift.
Each snapshot contains 4,214 grid points

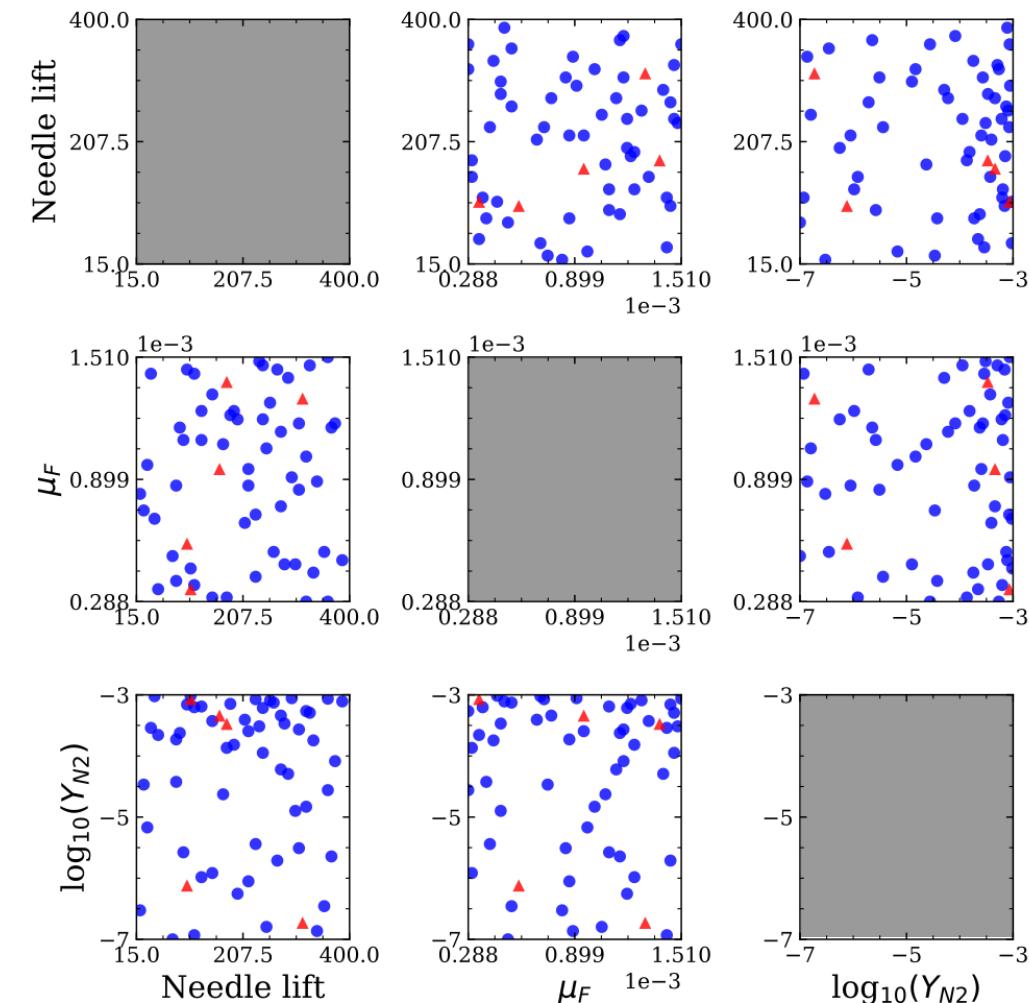
DESIGN OF EXPERIMENTS (DOE)

Input space of parameters that affect cavitation is efficiently explored

Design Parameters	Range		
Needle lift, δ [μm]	15	400	[1]
Fuel viscosity, μ_F [$(\text{N s})/\text{m}^2$]	2.88×10^{-4}	1.51×10^{-3}	[2]
Level of dissolved gas Y_{N_2} [-]	1.0×10^{-7}	1.0×10^{-3}	[3]

- Design of Experiments (DoE)
 - Variant of Latin Hypercube Sampling
 - **60 samples in total in 3-D design parameter space**
- The blue dots (55) represent operating conditions seen during training, and the **red** dots (5) correspond to new operating conditions (test cases)

The test cases are chosen to encompass the different flow structures of the gas phase in the design space through input sensitivity analysis



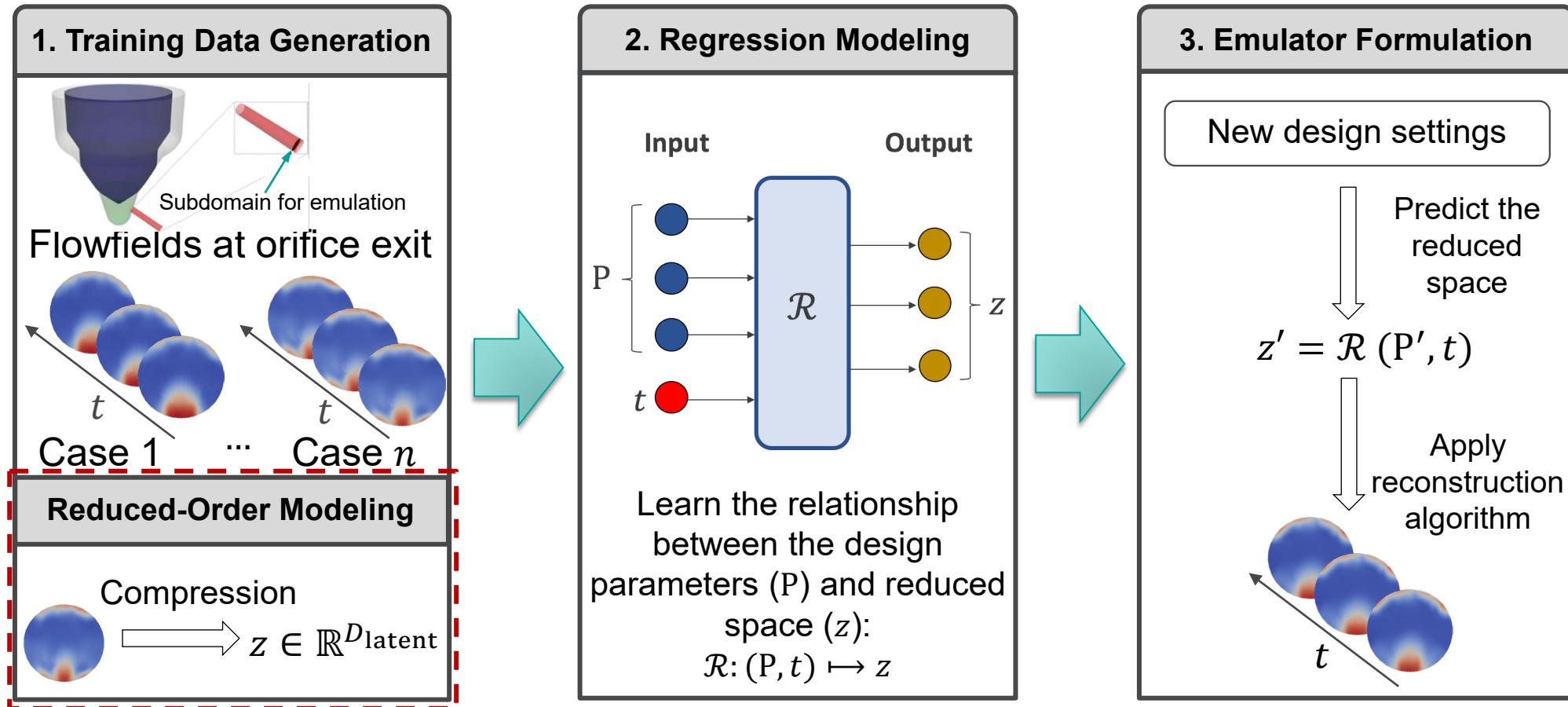
[1] Guo, Torelli et al., *SAE Int. J. Advances & Curr. Prac. in Mobility*, 2020

[2] Magnotti and Som, *ASME ICEF2019-7269*, 2019

[3] Battistoni et al., *Atomization and Sprays* 25(6), 2015

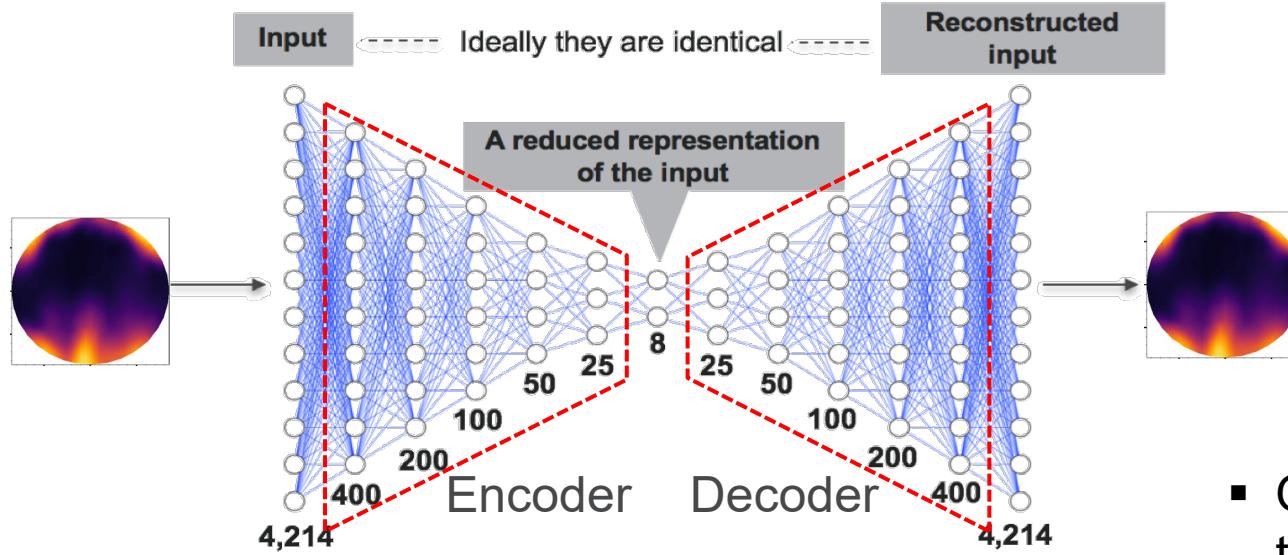
EMULATOR FRAMEWORK

Three phases to deconstruct the emulator formulation



AUTOENCODER FRAMEWORK

Using deep learning to reduce the dimensionality of flowfields



Hyperparameters (grid-search-based)

Hyperparameter	Value
Number of hidden layers	10 (5 each for \mathcal{T}_{enc} and \mathcal{T}_{dec})
\mathcal{T}_{enc}	[400, 200, 100, 50, 25]
\mathcal{T}_{dec}	[25, 50, 100, 200, 400]
D_{code}	8 (for α, u, w, m_l), 20 (for v)
Optimizer algorithm	Adam
Learning rate of optimizer	2×10^{-5}
Number of epochs	1000
Batch size	25
L_2 Regularization parameter	5×10^{-5}

Autoencoders:
Reduce the dimension of the flowfields
↓
Make the problem of predicting flowfields for unknown operating conditions tractable

- Other dimensionality reduction techniques like Proper Orthogonal Decomposition (POD) were also explored ^[1]
- Deep autoencoders are chosen as the preferred dimensionality reduction tool because the complex non-linear transformations allow high representation power with low latent space dimensions

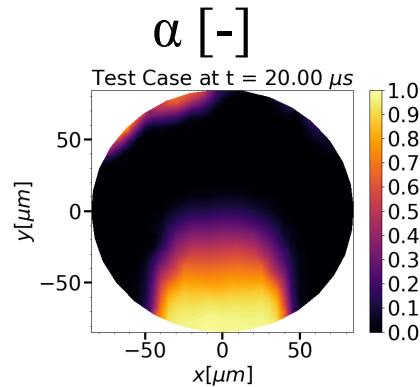
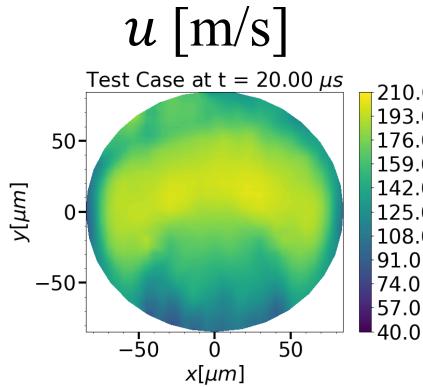
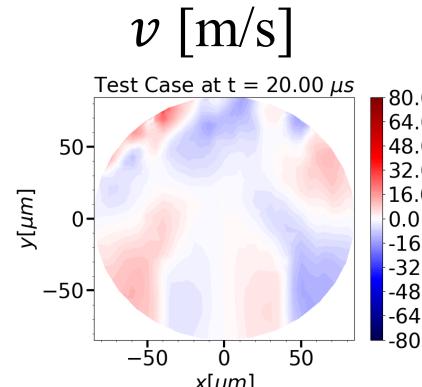
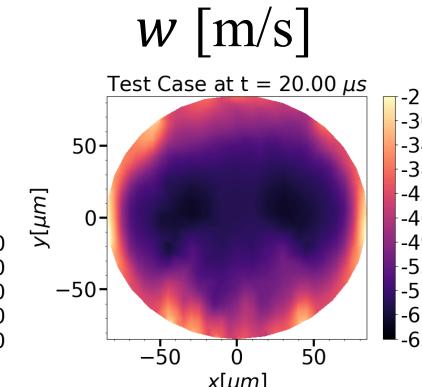
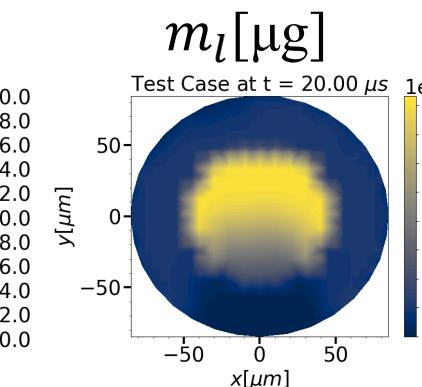
[1] Milan, Torelli, Lusch, Magnotti, *Atomization and Sprays* 30(6), 2020

[2] Mondal et al., SAE Technical Paper 2021-01-0550, 2020.

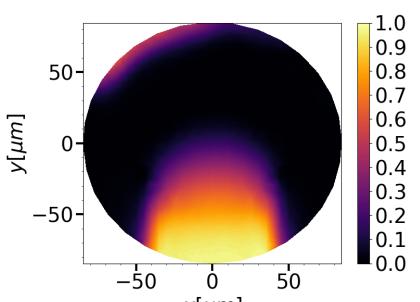
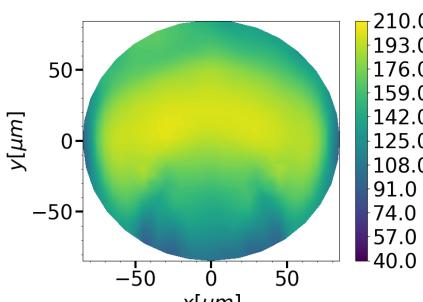
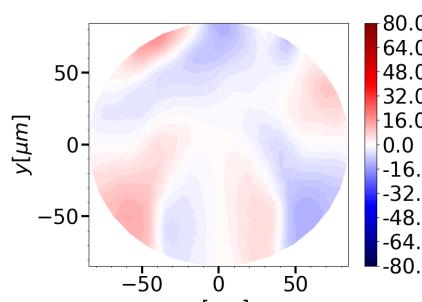
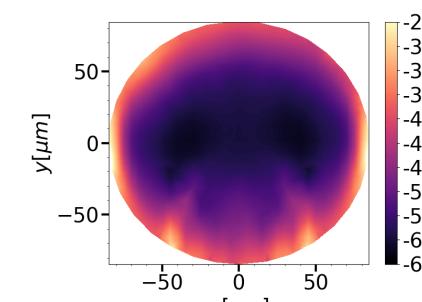
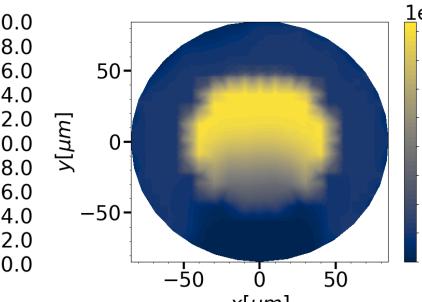
[3] Milan et al., AIAA SciTech Paper 2021-1016, 2021.

REDUCED SPACE CAPTURES FLOW COMPLEXITIES

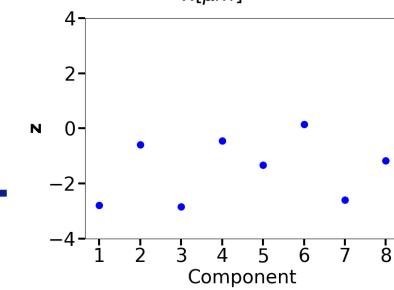
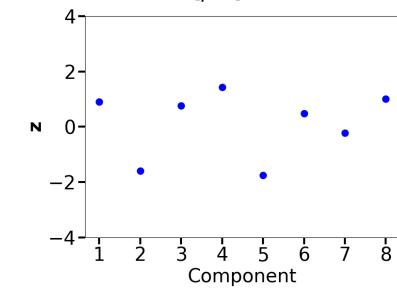
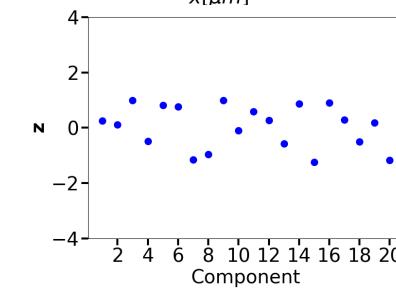
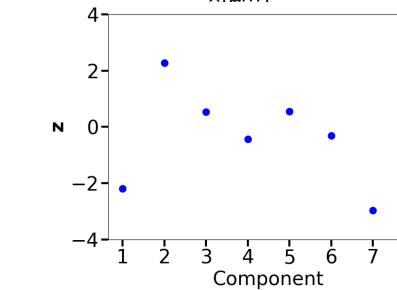
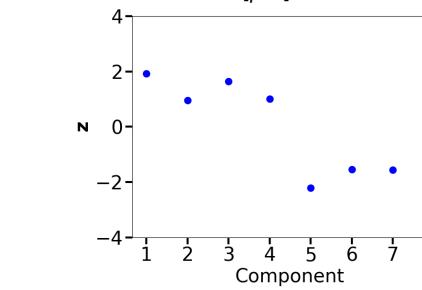
Truth



Reconstructed



Reduced Space



Errors averaged over 5 test cases

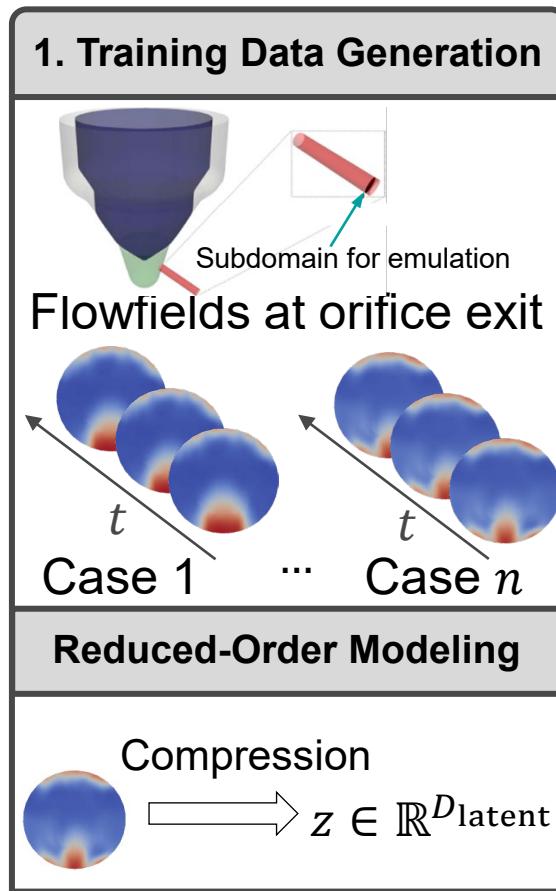
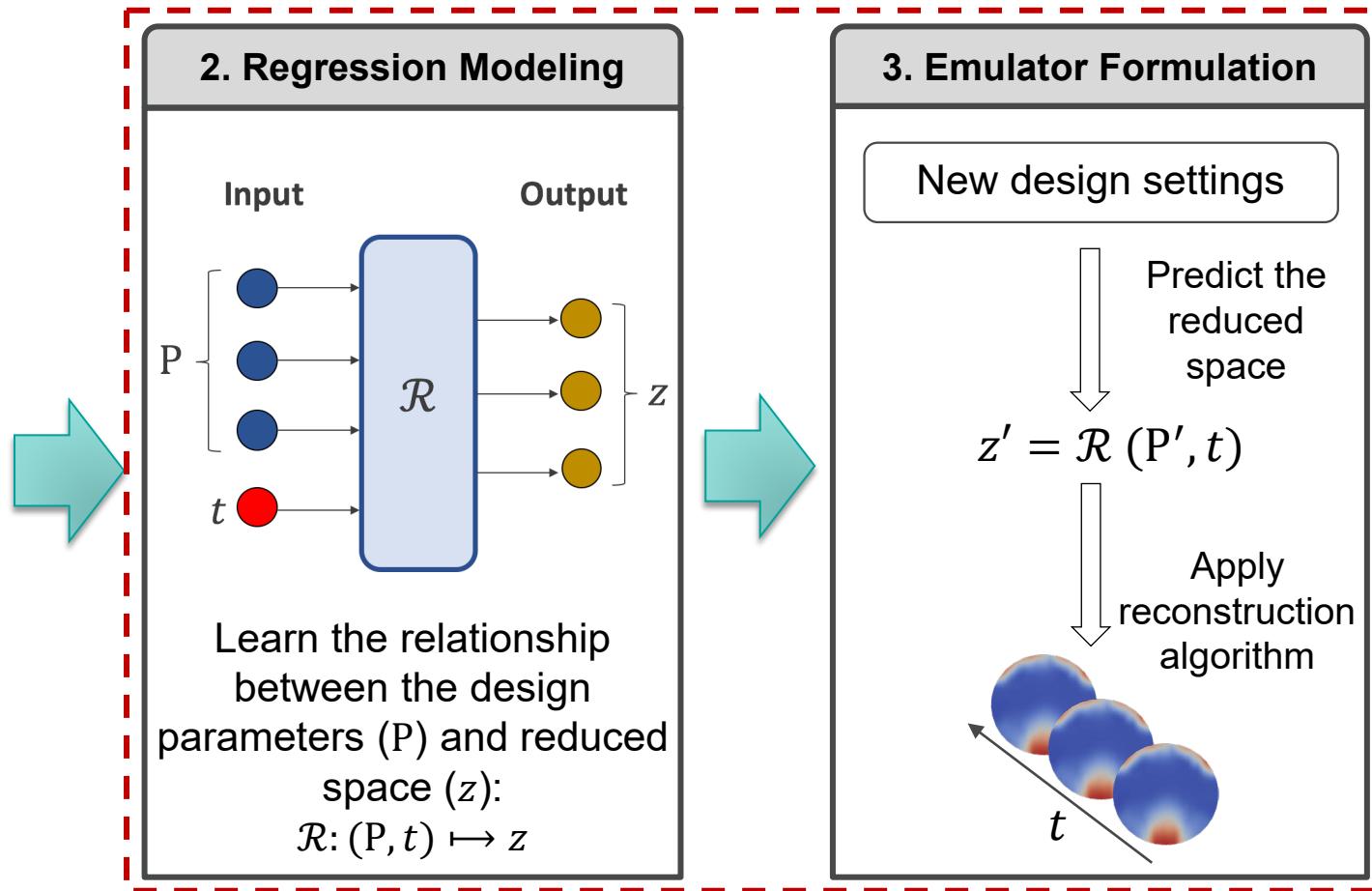
Reconstruction error of time-averaged flowfields

Flowfield	α	u	v	w	m_l
Error	2%	1%	8%	1%	1%

Demonstrations shown for Case 51

EMULATOR FRAMEWORK

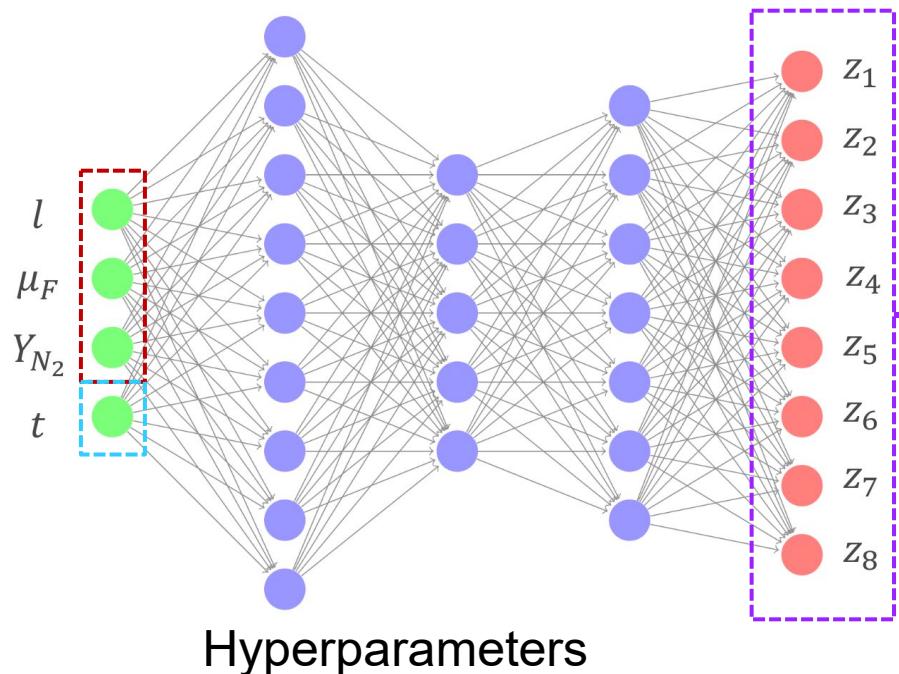
Three phases to deconstruct the emulator formulation



81 snapshots per CFD case extracted at the **orifice exit**.
Each snapshot contains 4,214 grid points

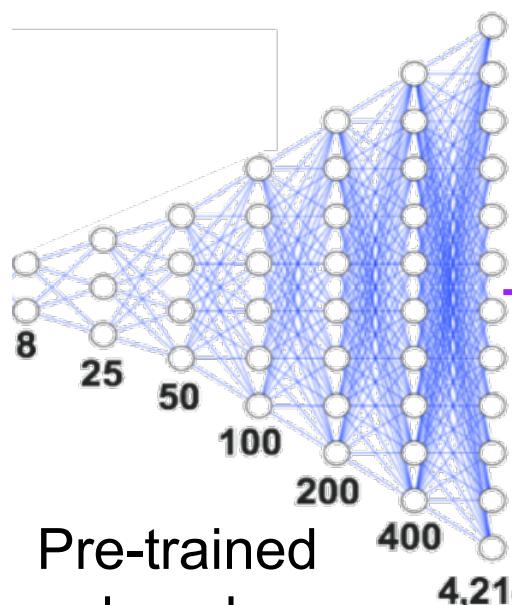
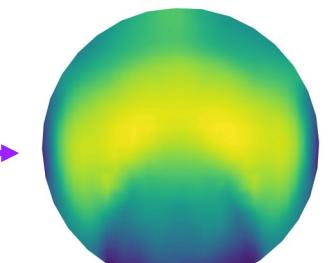
REGRESSION AND EMULATION PERFORMANCE

Deep Learning to relate design parameters to reduced space



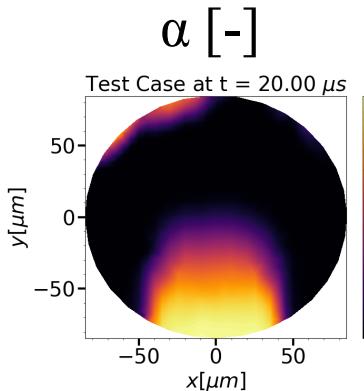
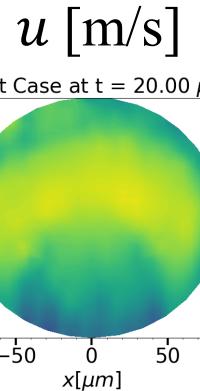
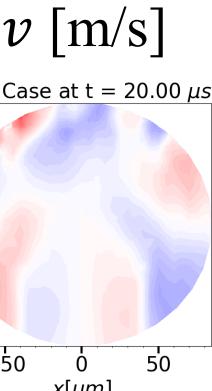
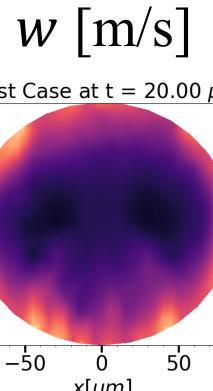
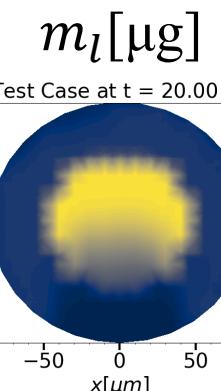
The regression model is another deep neural network that maps the **design variables** and **time** to the **reduced dimensional latent space**

Hyperparameter	Value
Number of hidden layers	4
\mathcal{T}_{enc}	[8, 16, 32, 32]
Optimizer algorithm	Adam
Learning rate of optimizer	1×10^{-4}
Number of epochs	500
Batch size	25
L_2 Regularization parameter	2×10^{-3}

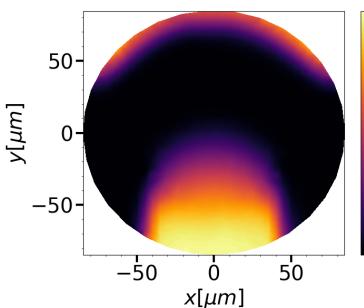
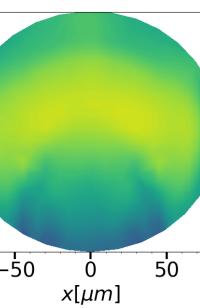
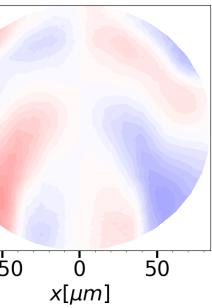
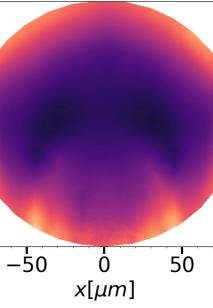
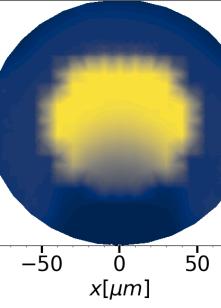


PREDICTIONS OF TIME-AVERAGED FLOWFIELDS

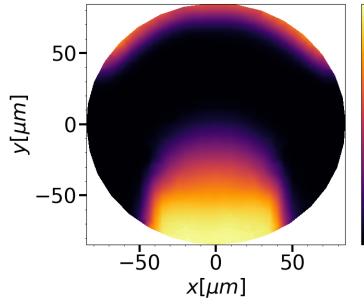
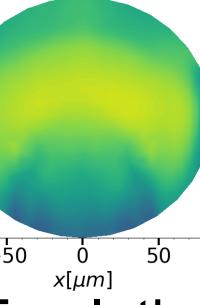
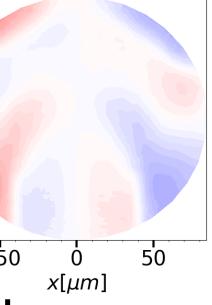
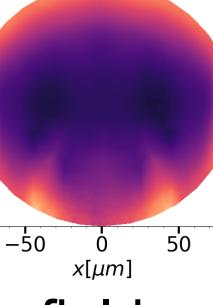
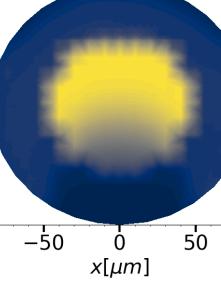
Truth



Time-Averaged Truth



Emulated



Errors averaged over 5 test cases

Emulation error of time-averaged flowfields

Flowfield	α	u	v	w	m_l
Error	8%	2%	22%	2%	2%

Demonstrations shown for Case 51

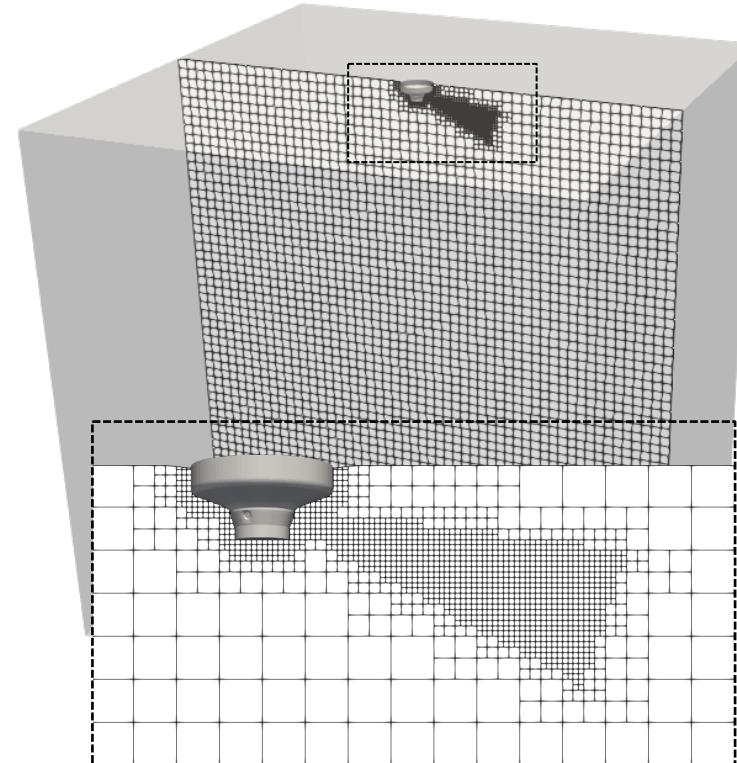
APPLICATION OF EMULATED FLOWFIELDS

Injector-exit predictions to study the spray and combustion behavior

Fuel	Fuel Temperature [K]	Fuel Pressure [bar]	Chamber Temperature [K]	Chamber Density [kg/m ³]
n-dodecane	323	1500	900	22.8

Model Set-up

Software	CONVERGE
Parcel Initialization	Static coupling, LVF threshold = 0.1, TKE = 3000 m ² /s ² [1]
Spray breakup	KH-RT, No collisions
Turbulence	RANS, RNG κ - ϵ
Combustion	UFPV – 4D tabulation (χ , c , \tilde{Z}^2 , \tilde{Z}) [2] LLNL mechanism (2,755 species + 11,173 reactions)
Mesh spacing	2 mm base grid size 250 μ m min grid size (AMR + Embedding) Peak cell count: 940,000 cells
Run time	~20 core-hours per 10 μ s of simulated time Max convective-based CFL = 1.0, dt \sim 1e-07 s



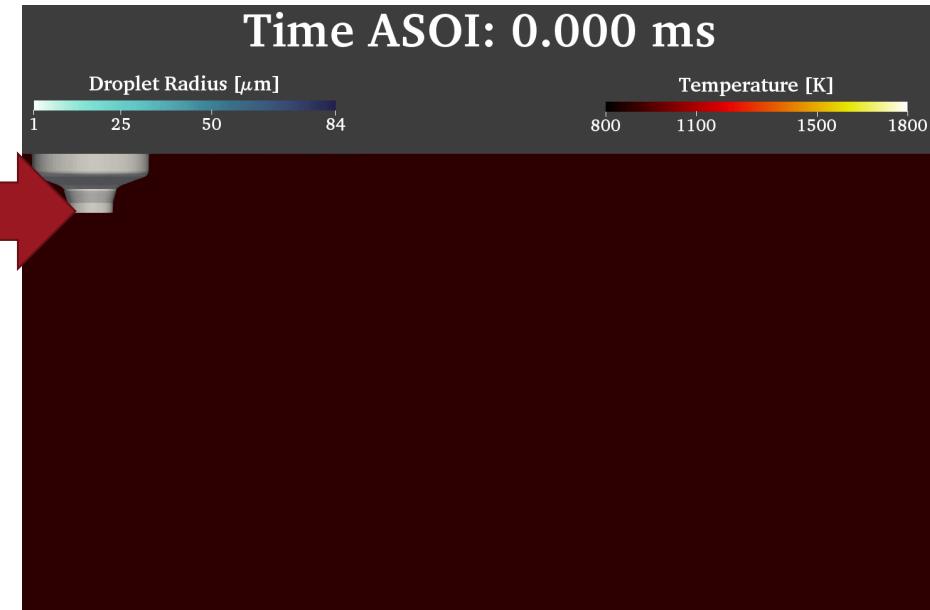
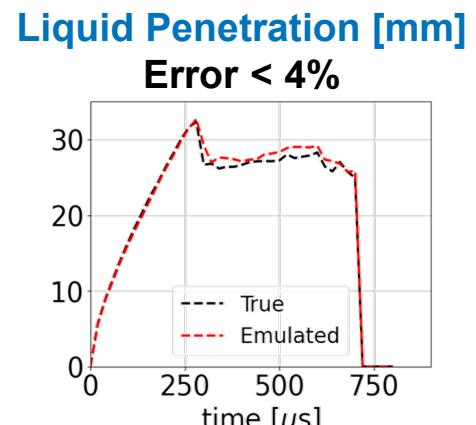
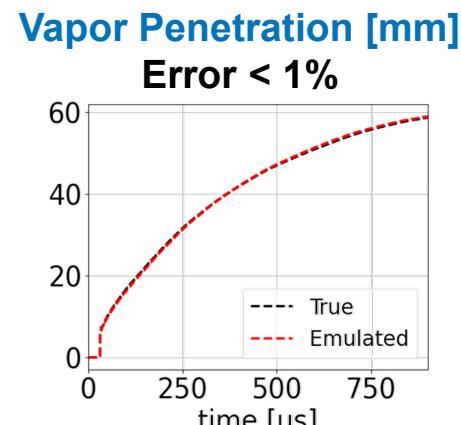
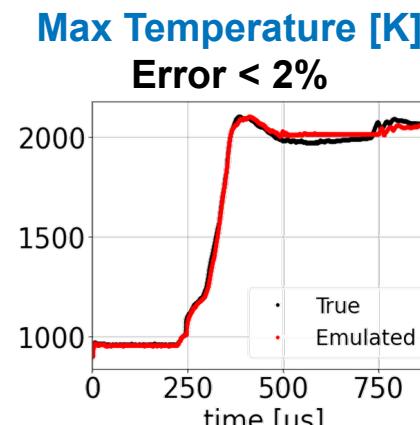
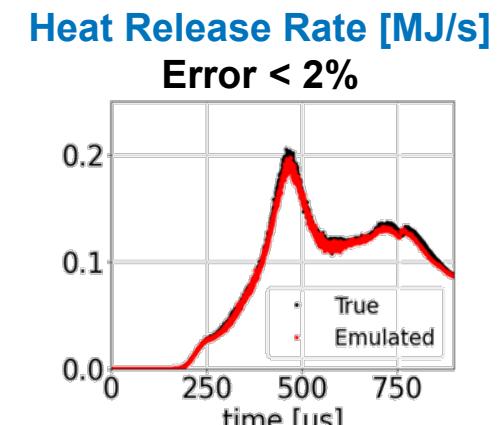
APPLICATION OF EMULATED FLOWFIELDS

Accurate spray combustion predictions at a fraction of the cost

Injection Map from CFD (“Truth”)

2 million times less expensive

Injection Map from Emulator



NEED FOR TRANSFER LEARNING^[1]

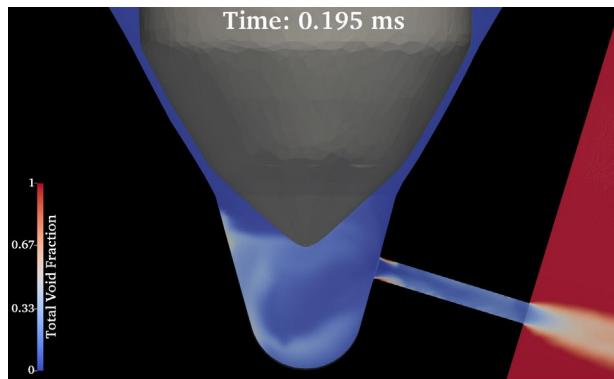
Addressing data scarcity in transient injection simulations

Typical turn-around time	
Internal flow simulations	Engine simulations
~ weeks	~ days

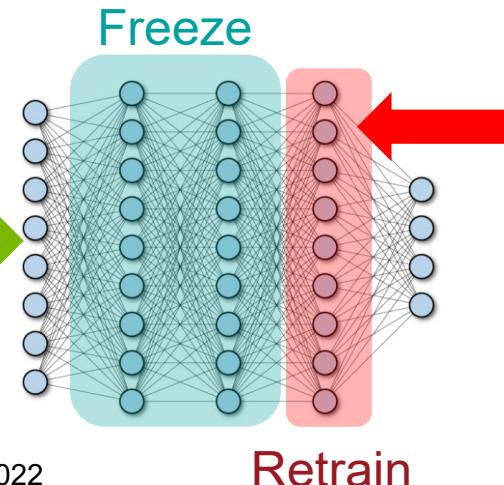
Need to accelerate internal flow simulations to have comparable turn around time with engine simulations

Transient injection simulations are expensive \Rightarrow Scarcity of data for training machine learning models

Expedite training for transient injector simulations using transfer learning



Static-Needle simulations
(Source domain)

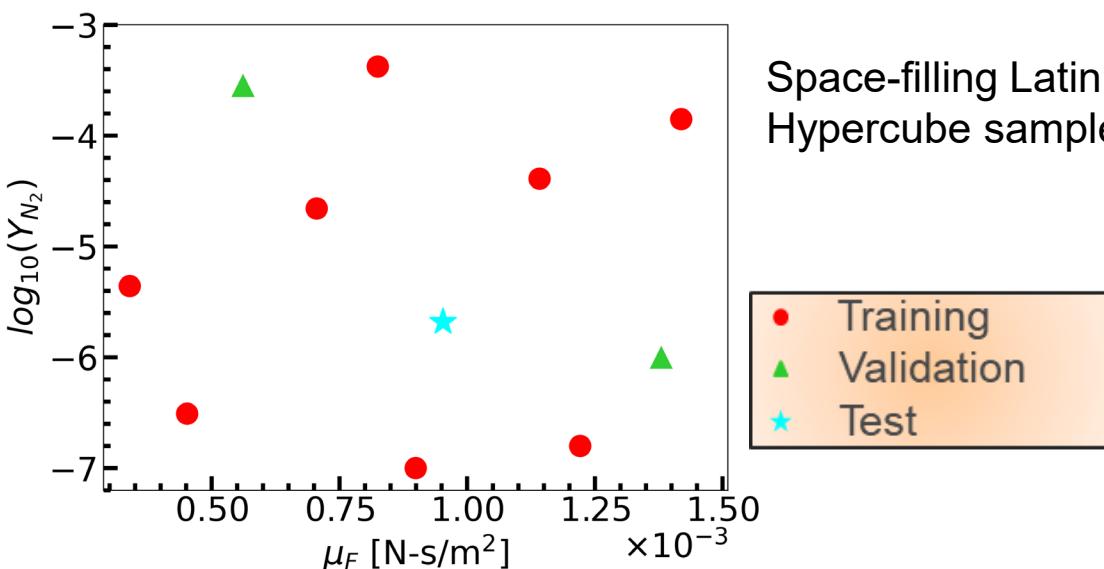


Moving-needle simulations
(Target domain)

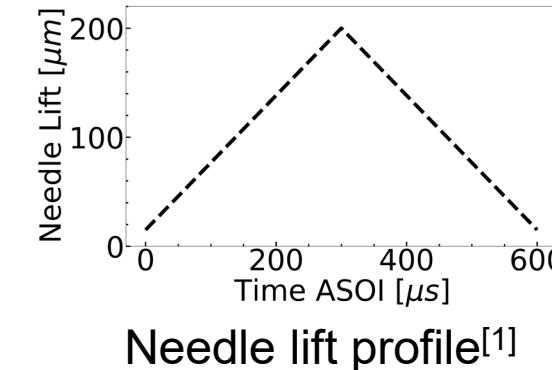
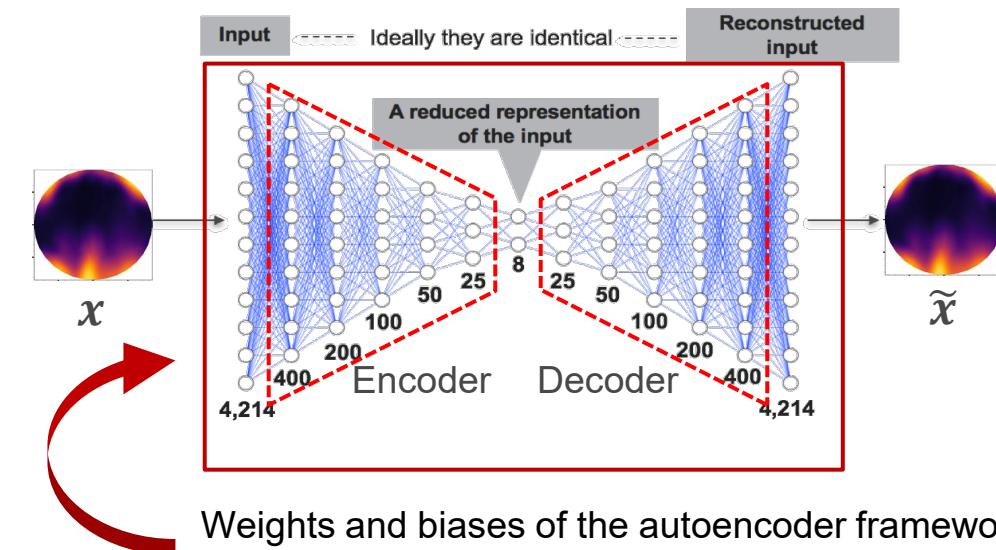
DESIGN OF EXPERIMENTS (DOE)

Input space of parameters that affect cavitation is efficiently explored

Design Parameters	Range		
Needle lift, δ [μm]	15	400	[1]
Fuel viscosity, μ_F [$(\text{N s})/\text{m}^2$]	2.88×10^{-4}	1.51×10^{-3}	[2]
Level of dissolved gas Y_{N_2} [-]	1.0×10^{-7}	1.0×10^{-3}	[3]



11 samples in total in 2-D design parameter space



[1] Guo, Torelli et al., SAE Int. J. Advances & Curr. Prac. in Mobility, 2020

[2] Magnotti and Som, ASME ICEF2019-7269, 2019

[3] Battistoni et al., Atomization and Sprays 25(6), 2015

IMPACT OF TRANSFER LEARNING

Performance evaluated on reconstruction error for total void fraction

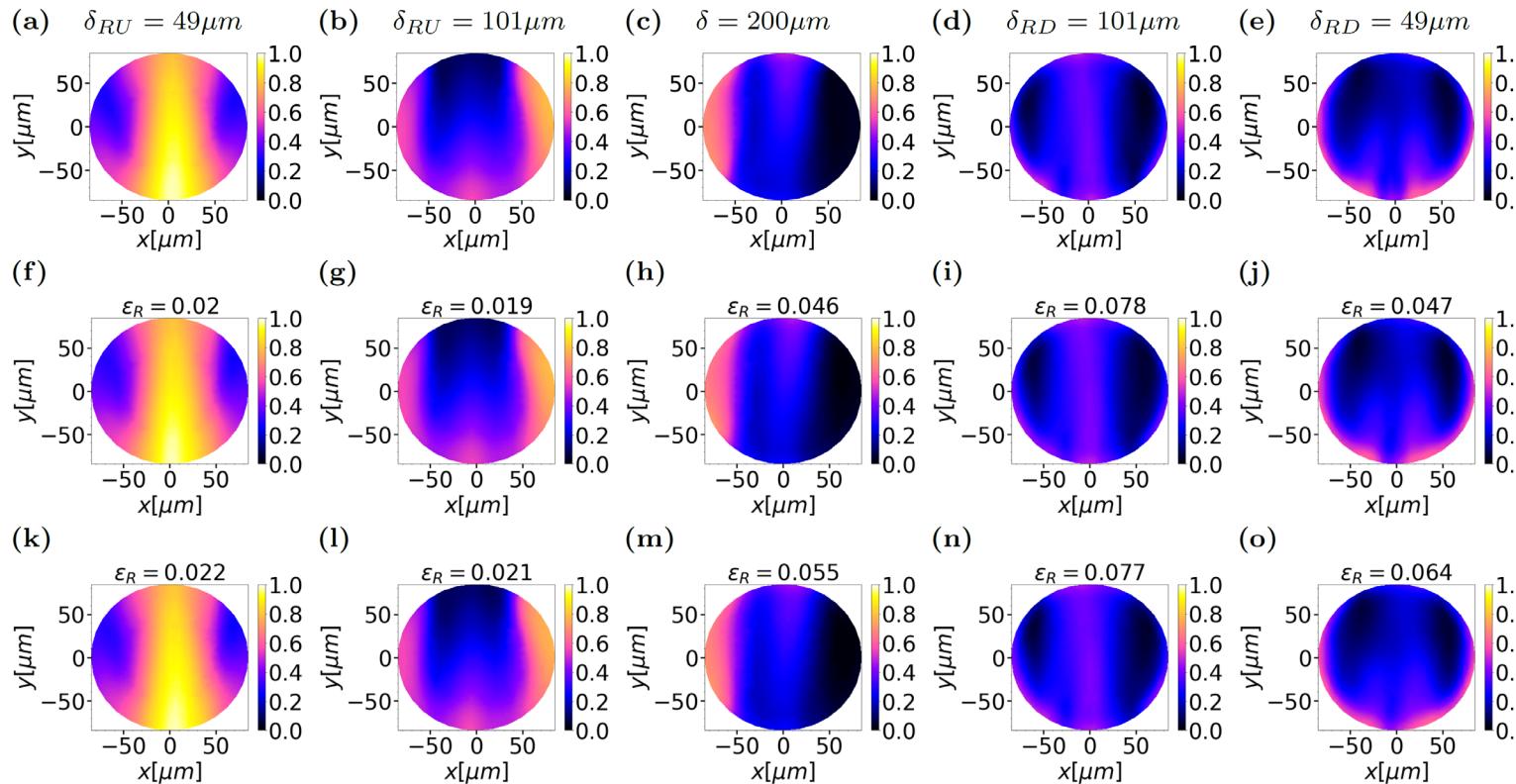
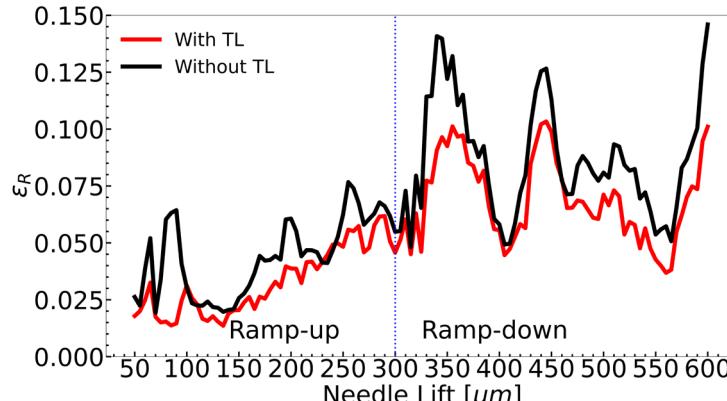
Truth
(CFD)

Reconstructed
with transfer
learning

Reconstructed
without transfer
learning

Reconstruction
error

$$\varepsilon_R \triangleq \frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2}$$



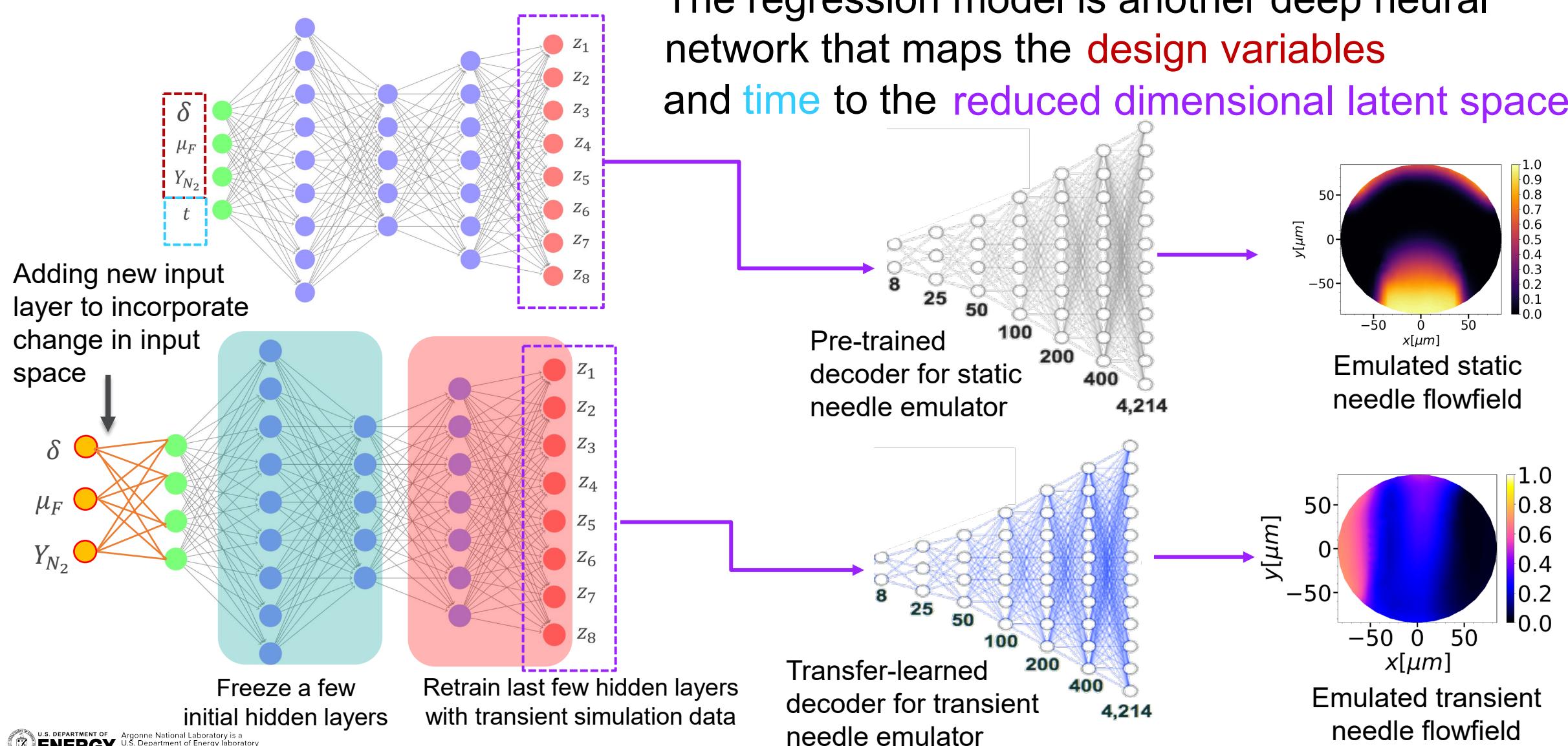
δ_{RU}
Needle lift during
ramp-up phase

δ_{RD}
Needle lift during
ramp-down phase

- Transfer Learning results in better reconstruction performance
- ~5% reduction in ε_R when transfer learning was employed

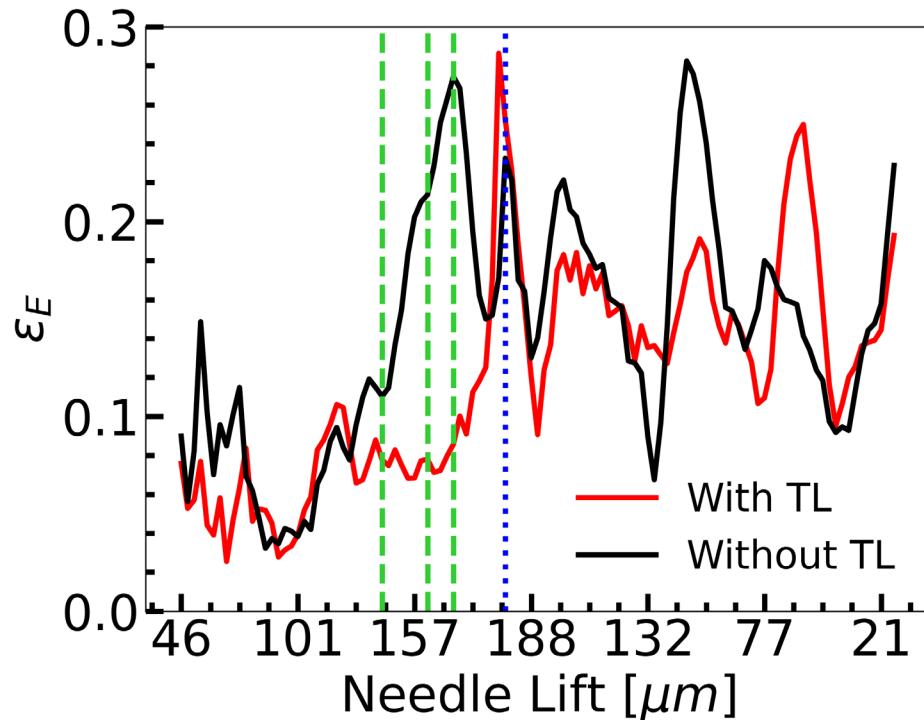
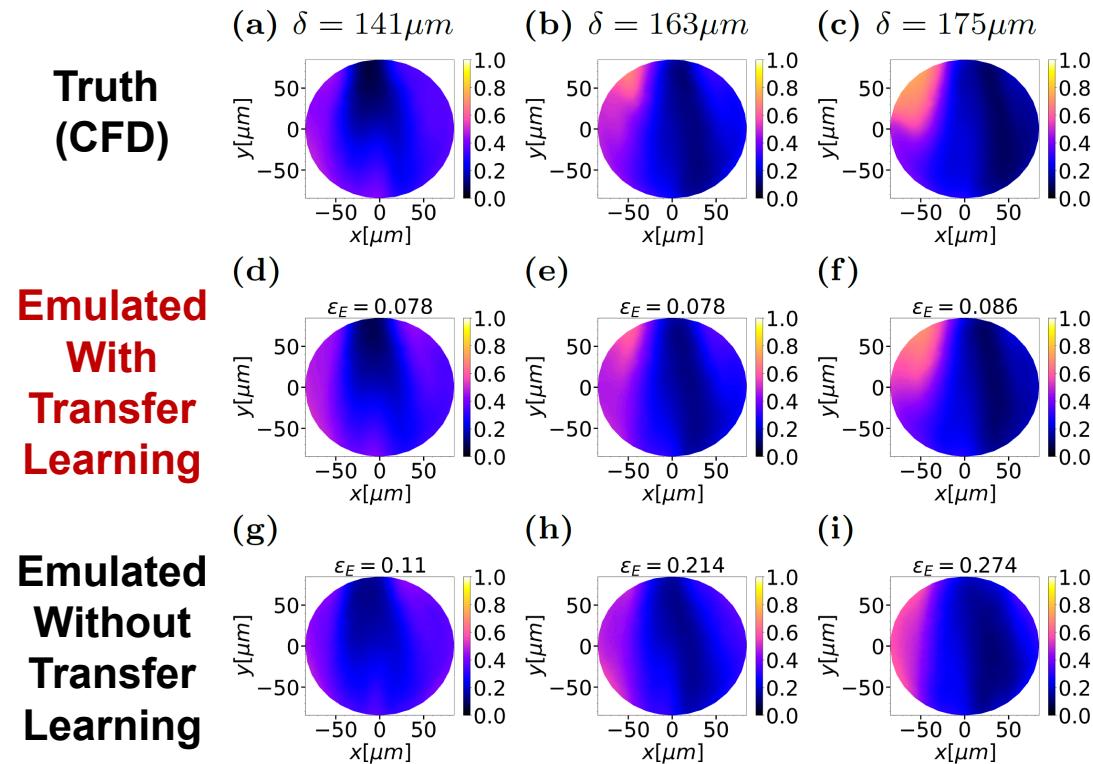
IMPROVING TRANSIENT INJECTION PREDICTIONS

Building upon the static needle regression framework



IMPROVING TRANSIENT INJECTION PREDICTIONS

Performance evaluated on reconstruction error for total void fraction



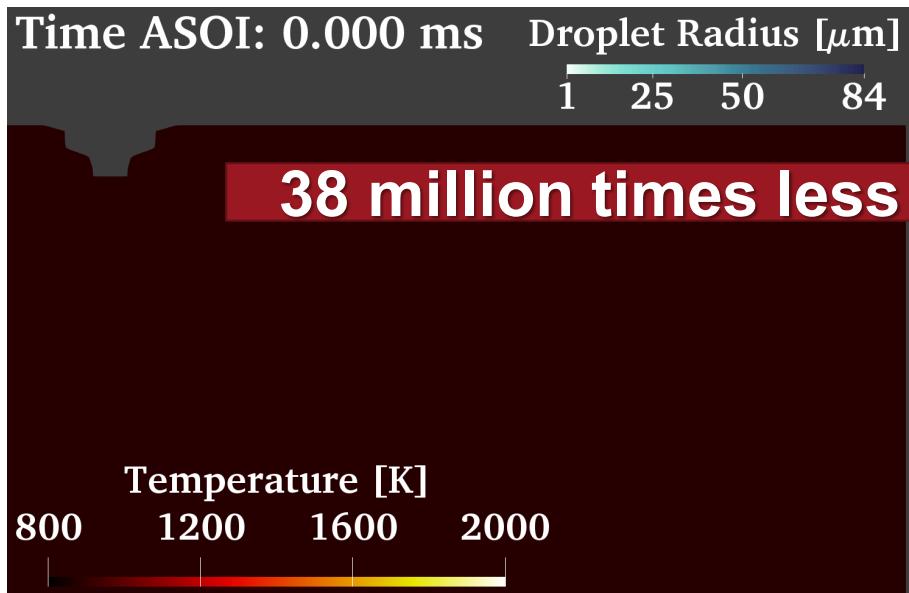
- 3% reduction in average emulation error over time
- A peak reduction of 20% in emulation error before the end of ramp-up phase

- Transfer Learning from static needle simulations helps in improving the predictions of total void fraction field for transient injection conditions.
- **Maximum achievable speedup ~ 38 million**

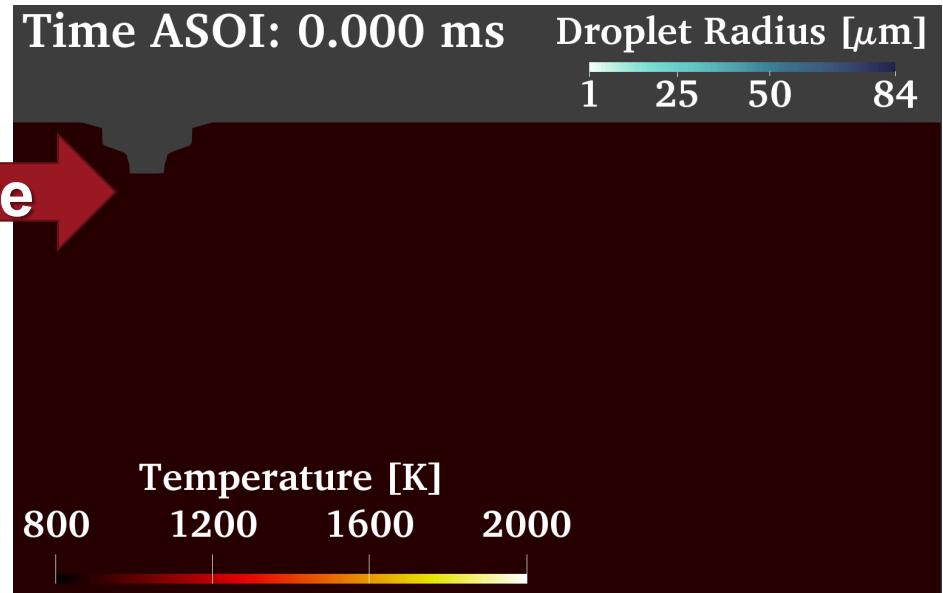
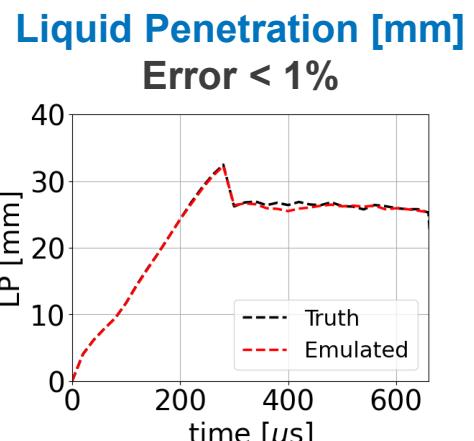
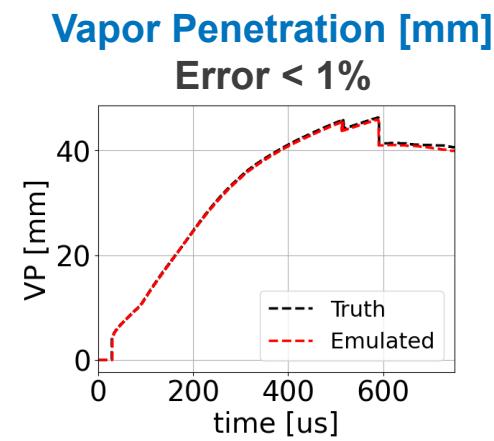
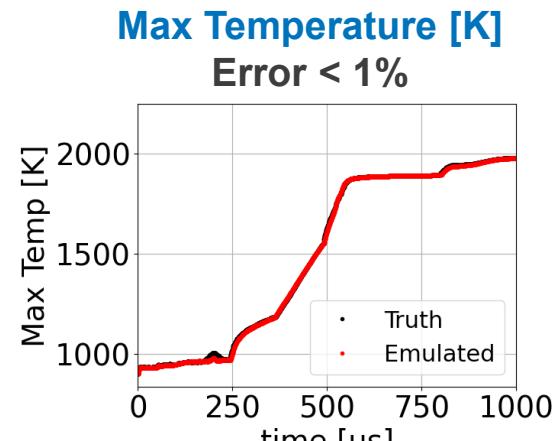
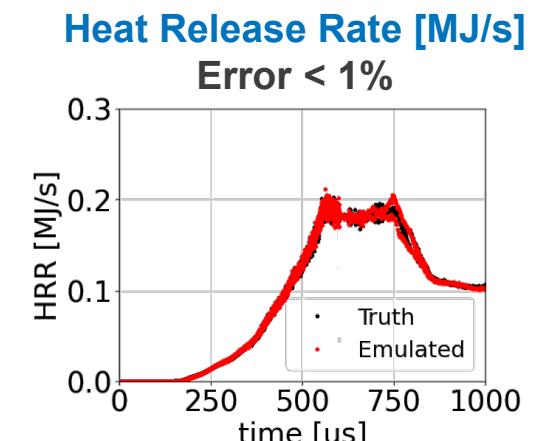
APPLICATION OF EMULATED FLOWFIELDS

Use of emulated transient injection maps

Injection Map from CFD (“Truth”)



Injection Map from GP-based Emulator



THANK YOU

Contact information:
Roberto Torelli, PhD: rtorelli@anl.gov

Argonne National Laboratory is a
U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

