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INJECTION INFLUENCES ENGINE PERFORMANCE[1]
Detailed injection simulations are too expensive at the industry level

• Machine Learning 
models emulate internal 
flow fields at orifice exit

• Emulated flowfields 
coupled with Lagrangian 
spray simulations using 
static one-way coupling

Emulated flowfields at orifice exit for static-needle-lift Large Eddy Simulations at steady state[2]:
• Gaseous volume fraction (𝛼𝛼)
• Velocity components (𝑢𝑢, 𝑣𝑣,𝑤𝑤)
• Liquid mass (𝑚𝑚𝑙𝑙)

A-M1 injector
Side-oriented single-hole 
injector geometry

[1] Torelli, Pei, Zhang, Som, Communications Engineering, 2022
[2] Mondal, Torelli, Lusch, Milan, Magnotti, SAE Technical Paper 2021-01-0550, 2021
[3] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020

Fuel: n-Dodecane - 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = 0.0013 bar 
1500 bar

outer chamber

injector
needle

orifice

sac

20 bar

1400 – 2000 CPU-hours per 
10 µs of simulated time[3]



EMULATOR FRAMEWORK
Three phases to deconstruct the emulator formulation

[1] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020

81 snapshots per CFD case extracted at the orifice exit between 
𝑡𝑡 = 20-40 𝜇𝜇𝜇𝜇, for steady-state flow conditions with static needle lift.  

Each snapshot contains 4,214 grid points

1. Training Data Generation

Case 1 Case 𝑛𝑛…
𝑡𝑡𝑡𝑡

Reduced-Order Modeling

𝑧𝑧 ∈ ℝ𝐷𝐷latent
Compression

2. Regression Modeling

Learn the relationship 
between the design 

parameters (Ρ) and reduced 
space (𝑧𝑧):
ℛ: (Ρ, 𝑡𝑡) ⟼ 𝑧𝑧

3. Emulator Formulation 

New design settings 

Predict the 
reduced 
space

Apply
reconstruction 

algorithm

𝑡𝑡

𝑧𝑧𝑧 = ℛ (Ρ′, 𝑡𝑡)

Flowfields at orifice exit
Subdomain for emulation



DESIGN OF EXPERIMENTS (DOE)
Input space of parameters that affect cavitation is efficiently explored

 Design of Experiments (DoE)
Variant of Latin Hypercube Sampling
60 samples in total in 3-D design parameter space

 The blue dots (55) represent operating conditions seen 
during training, and the red dots (5) correspond to new 
operating conditions (test cases)

Design Parameters Range
Needle lift, 𝛿𝛿 [µm] 15 400 [1]

Fuel viscosity, µF [(N s) /m2] 2.88×10-4 1.51×10-3 [2]

Level of dissolved gas 𝑌𝑌𝑁𝑁2 [-] 1.0×10-7 1.0×10-3 [3]

[1] Guo, Torelli et al., SAE Int. J. Advances & Curr. Prac. in Mobility, 2020
[2] Magnotti and Som, ASME ICEF2019-7269, 2019
[3] Battistoni et al., Atomization and Sprays 25(6), 2015

The test cases are chosen to encompass the
different flow structures of the gas phase in the 
design space through input sensitivity analysis
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Each snapshot contains 4,214 grid points



AUTOENCODER FRAMEWORK
Using deep learning to reduce the dimensionality of flowfields

Autoencoders:
Reduce the dimension of the flowfields 

Make the problem of predicting flowfields for
unknown operating conditions tractable

en
co

de
r

Hyperparameters (grid-search-based)

Encoder Decoder  Other dimensionality reduction
techniques like Proper Orthogonal 
Decomposition (POD) were also explored [1]

[1] Milan, Torelli, Lusch, Magnotti, Atomization and Sprays 30(6), 2020 
[2] Mondal et al., SAE Technical Paper 2021-01-0550, 2020.
[3] Milan et al., AIAA SciTech Paper 2021-1016, 2021.

 Deep autoencoders are chosen as the 
preferred dimensionality reduction tool 
because the complex non-linear 
transformations allow high representation
power with low latent space dimensions  



REDUCED SPACE CAPTURES FLOW COMPLEXITIES
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Reconstruction error of time-averaged flowfields
Flowfield 𝛼𝛼 𝑢𝑢 𝑣𝑣 𝑤𝑤 𝑚𝑚𝑙𝑙

Error 2% 1% 8% 1% 1%

R
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ed
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α [-] 𝑢𝑢 [m/s] 𝑣𝑣 [m/s] 𝑤𝑤 [m/s] 𝑚𝑚𝑙𝑙[μg]

Errors averaged 
over 5 test cases

Demonstrations 
shown for Case 51
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REGRESSION AND EMULATION PERFORMANCE
Deep Learning to relate design parameters to reduced space

Hyperparameters

The regression model is another deep neural
network that maps the design variables
and to the reduced dimensional latent spacetime 

Pre-trained 
decoder

Emulated
flowfield of 

Interest



PREDICTIONS OF TIME-AVERAGED FLOWFIELDS
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α [-] 𝑢𝑢 [m/s] 𝑣𝑣 [m/s] 𝑤𝑤 [m/s] 𝑚𝑚𝑙𝑙[μg]

Errors averaged 
over 5 test cases

Demonstrations 
shown for Case 51Flowfield 𝛼𝛼 𝑢𝑢 𝑣𝑣 𝑤𝑤 𝑚𝑚𝑙𝑙

Error 8% 2% 22% 2% 2%

Emulation error of time-averaged flowfields



APPLICATION OF EMULATED FLOWFIELDS
Injector-exit predictions to study the spray and combustion behavior

Model Set-up
Software CONVERGE
Parcel Initialization Static coupling, LVF threshold = 0.1,TKE = 3000 m2/s2 [1]

Spray breakup KH-RT, No collisions
Turbulence RANS, RNG κ-ε

Combustion UFPV – 4D tabulation (𝜒𝜒, 𝑐𝑐, �𝑍𝑍"2, �𝑍𝑍) [2]

LLNL mechanism (2,755 species + 11,173 reactions)

Mesh spacing
2 mm base grid size
250 μm min grid size (AMR + Embedding)
Peak cell count: 940,000 cells

Run time ~20 core-hours per 10 μs of simulated time
Max convective-based CFL = 1.0, dt ~ 1e-07 s 

Fuel Fuel Temperature 
[K]

Fuel Pressure
[bar]

Chamber Temperature
[K]

Chamber Density 
[kg/m3]

n-dodecane 323 1500 900 22.8

[1] Nocivelli et al., ASME ICEF2019-7258, 2019
[2] Nunno et al. AEC, 2020



APPLICATION OF EMULATED FLOWFIELDS
Accurate spray combustion predictions at a fraction of the cost 
Injection Map from CFD (“Truth”) Injection Map from Emulator

[1] Mondal, Torelli, Lusch, Milan, Magnotti, SAE World Congress, 2021 

2 million times less expensive

Liquid Penetration [mm]
Error < 4%

Vapor Penetration [mm]
Error < 1%

Max Temperature [K]
Error < 2%

Heat Release Rate [MJ/s]
Error < 2%



NEED FOR TRANSFER LEARNING[1]
Addressing data scarcity in transient injection simulations

Typical turn-around time
Engine 

simulations
Internal flow 
simulations
~ weeks ~ days

Need to accelerate 
internal flow simulations 
to have comparable turn 
around time with engine 
simulations

Transient injection 
simulations are 
expensive ⇒ Scarcity of 
data for training machine 
learning models

Expedite training for transient injector simulations using transfer learning

Static-Needle 
simulations

Moving-needle 
simulations

(Source domain)

(Target domain)

Freeze

Retrain[1] Mondal, Magnotti, Lusch, Maulik, Torelli, JEGTP 145(4), 2022



DESIGN OF EXPERIMENTS (DOE)
Input space of parameters that affect cavitation is efficiently explored

Design Parameters Range
Needle lift, 𝛿𝛿 [µm] 15 400 [1]

Fuel viscosity, µF [(N s) /m2] 2.88×10-4 1.51×10-3 [2]

Level of dissolved gas 𝑌𝑌𝑁𝑁2 [-] 1.0×10-7 1.0×10-3 [3]

[1] Guo, Torelli et al., SAE Int. J. Advances & Curr. Prac. in Mobility, 2020
[2] Magnotti and Som, ASME ICEF2019-7269, 2019
[3] Battistoni et al., Atomization and Sprays 25(6), 2015

Needle lift profile[1]  

11 samples in total in 2-D design parameter space

Space-filling Latin 
Hypercube samples

en
co

de
r

Encoder Decoder

Weights and biases of the autoencoder framework 
initialized from the trained static needle autoencoder

𝒙𝒙 �𝒙𝒙



IMPACT OF TRANSFER LEARNING
Performance evaluated on reconstruction error for total void fraction 

Truth 
(CFD)

Reconstructed 
with transfer 

learning

Reconstructed 
without transfer 

learning

𝛿𝛿𝑅𝑅𝑅𝑅
Needle lift during 
ramp-up phase
𝛿𝛿𝑅𝑅𝑅𝑅
Needle lift during 
ramp-down phase

• Transfer Learning results in better 
reconstruction performance

• ~5% reduction in 𝜀𝜀𝑅𝑅 when transfer 
learning was employed

Reconstruction 
error



IMPROVING TRANSIENT INJECTION PREDICTIONS
Building upon the static needle regression framework

The regression model is another deep neural
network that maps the design variables
and to the reduced dimensional latent spacetime 

Pre-trained 
decoder for static 
needle emulator

Emulated static 
needle flowfield

Transfer-learned
decoder for transient 
needle emulator

𝛿𝛿

𝛿𝛿

𝜇𝜇𝐹𝐹

𝑌𝑌𝑁𝑁2

Freeze a few 
initial hidden layers

Retrain last few hidden layers 
with transient simulation data

Adding new input
layer to incorporate
change in input 
space

Emulated transient 
needle flowfield



IMPROVING TRANSIENT INJECTION PREDICTIONS
Performance evaluated on reconstruction error for total void fraction 

Truth 
(CFD)

Emulated 
With 

Transfer 
Learning

Emulated 
Without 
Transfer 
Learning

 Transfer Learning from static needle 
simulations helps in improving the predictions 
of total void fraction field for transient injection 
conditions.

 Maximum achievable speedup ~ 38 million

• 3% reduction in average emulation 
error over time

• A peak reduction of 20% in emulation 
error before the end of ramp-up phase 



APPLICATION OF EMULATED FLOWFIELDS
Use of emulated transient injection maps

Injection Map from CFD (“Truth”) Injection Map from GP-based Emulator

Liquid Penetration [mm]
Error < 1%

Vapor Penetration [mm]
Error < 1%

Max Temperature [K]
Error < 1%

Heat Release Rate [MJ/s]
Error < 1%

38 million times less expensive



THANK YOU

Contact information:
Roberto Torelli, PhD: rtorelli@anl.gov
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