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Preparing for the future

Motivation

• Development of drag correlations 

usually from static particle suspensions
• Implementation of drag correlations
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Particle collision modeling

• Velocity and pressure from a few layers of fluid 

node surrounding the immersed surface are 

interpolated at the solid surface.

• Direct contact leads to probes from one 

immersed surface embedded in another 

immersed surface, leading to accuracy and even 

stability related issues.
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• Before collision, movement 

of the particles are governed 

by the force derived from 

IBM calculation

• Collision are pre-triggered 

when inter-surface 

distance diminishes to less 

than 4 cell edge length.

• Post-collision velocities 

are derived from soft 

sphere mode.
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Particle collision modeling

• In reality, lubrication effect arises among two adjacent particles with non-zero relative 

velocities.

• The lubrication effect behaves like a damper that impedes the particles’ relative motion.

• In current simulations, wet coefficient of restitution is adopted to account for lubrication 

effect:
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PRS simulations

• Numerical setup

Base case Setup 1 Setup 2
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PRS results (static suspension)

• Static suspension results and comparison

Author Drag correlation Applicability

Rong et al. 

(2013)

𝐹𝑑

=
10𝜑

(1 − 𝜑)2
+ (1 − 𝜑)2 1 + 1.5 𝜑 + (0.11𝜑 1 + 𝜑

−
0.00456

(1 − 𝜑)4
+ (0.169(1 − 𝜑)2 +

0.0644

(1 − 𝜑)4
))𝑅𝑒−0.343)𝑅𝑒

50 ≤ 𝑅𝑒 ≤ 1000,

0.1 ≤ 𝜑 ≤ 0.6,

Spherical particle 

suspensions.

Tenneti et al. 

(2011)

𝐹 𝜑, 𝑅𝑒 =
𝐹𝑖𝑠𝑜

(1−𝜑)3
+ 𝐹𝜑 𝜑 + 𝐹𝜑,𝑅𝑒 𝜑, 𝑅𝑒 ,

𝐹𝜑 𝜑 =
5.81𝜑

(1−𝜑)3
+ 0.48

𝜑1/3

(1−𝜑)4
,

𝐹𝜑,𝑅𝑒 𝜑, 𝑅𝑒 = 𝜑3𝑅𝑒(0.95 +
0.61𝜑3

(1−𝜑)2
).

0.01 ≤ 𝑅𝑒 ≤ 300,

0.1 ≤ 𝜑 ≤ 0.5,

Spherical particle 

suspensions.

Solid lines: Correlation of Tang et al.

Dashed lines: Correlation of Tenneti et al. 
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PRS results (free evolving suspension)

• One case with Re=50, 𝜑 = 0.3

• Movement of particles • X-directional flow velocity
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• Freely evolving suspension with different solid-fluid density ratios

ρs
ρf

= 2
ρs
ρf

= 10
ρs
ρf

= 100

PRS results (free evolving suspension)
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• Movable suspension drag correlations

PRS results (free evolving suspension)

• Tavanashad and Tang performed their simulations for freely evolving sphere 

suspensions.

• Huang assigned random velocities that obeyed the isotropic Maxwellian 

distribution to the particles in the suspension mimicking the effect of particle 

movement in freely evolving suspensions



Preparing for the future

• Movable suspension drag correlations

• Results at sold volume fraction between 0.1 and 0.3

PRS results (free evolving suspension)

ρs
ρf

= 2
ρs
ρf

= 10
ρs
ρf

= 100

Solid lines: Tavanashad’s correlation; 

dashed lines: Tang’s correlation; 

dash dot lines: Huang’s correlation
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• Movable suspension drag correlations

• Results at solid volume fraction of 0.4

PRS results (free evolving suspension)

ρs
ρf

= 2
ρs
ρf

= 10
ρs
ρf

= 100

Solid lines: Tavanashad’s correlation; 

dashed lines: Tang’s correlation; 

dash dot lines: Huang’s correlation
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• Different numerical setups don’t make significant difference in the particle dispersion in freely evolving 

suspensions

Particle dispersion

ρs
ρf

= 2
ρs
ρf

= 10
ρs
ρf

= 100

• Radial Distribution Function (RDF) in 

sphere suspensions at 𝜑 = 0.4
𝑔 𝑟 =

2𝑉𝑠𝑦𝑠

𝑁 𝑁−1

1

𝑉𝑟
σ𝑖=1
𝑁 σ𝑗=1,𝑖≠𝑗

𝑁 𝜃 𝑟𝑖𝑗 − 𝑟 𝜃 𝑟 + ∆𝑟 − 𝑟𝑖𝑗 ,

𝜃(𝑟′) = ቊ
1, 𝑟′ > 0
0, 𝑟′ ≤ 0

. 
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• Considering the case at 𝜑 = 0.4, increase in grid resolution increases the particle velocity fluctuation, whereas 

the increase in domain size doesn’t have much effect on the particle mobility, this might be the reason why 

results from 9 × 9 × 9 domain has negligible deviation from the results in 5 × 5 × 5 domain.

Particle kinematics analysis

ρs
ρf

= 2
ρs
ρf

= 10
ρs
ρf

= 100

• Granular temperature in the particle suspensions 𝑇∗ =
1

3𝑁
σ𝑘=𝑥,𝑦,𝑧σ𝑖=1

𝑁 𝑣𝑖,𝑘
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∗ 2
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Conclusion

• Increased domain size from 5 × 5 × 5 to 9 × 9 × 9 doesn’t affect the suspension 

averaged drag force;

• Increased grid resolution from 
1

40
𝑑𝑒𝑞 to 

1

80
𝑑𝑒𝑞 enhances the drag in particle 

suspensions with 𝜑 = 0.4;

• The increase of drag results from the enhanced particle mobility;

• Tavanashad’s correlation agrees with current PRS data well at 𝜑 ≤ 0.3; whereas 

Huang’s correlation reasonably captures the variation of drag from domains using 

dfferent grid resolutions at 𝜑 = 0.4.


