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In Situ Feature-driven Analysis at Exascale

• Exploration of scientific features is 
essential for understanding the 
simulated physical phenomenon
• Bubbles (voids) in multiphase flow 

modeling
• Halos in Cosmology simulations

• Accurate extraction of features at 
Exascale can be challenging
• Complexity of the modelled physical 

phenomenon 
• Features may lack precise descriptors

• e.g. Hard to define a bubble in a particle data 
set
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Use Distributions as a Statistical Feature Descriptor
• Probability distributions as feature descriptors

− Highlight the feature of interest in data directly
− No precise descriptor/definition is needed

Specify bubble feature in 
particle field

Highlighted bubble feature in 
intermediate particle density field

Distribution represents the selected 
region as the target feature
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An Overview of the End-to-end Analysis Pipeline



5

In Situ Statistical Feature Detection Pipeline
• Compute the particle density field from 

unstructured particle data
− A 3D histogram of particle locations that captures 

particles densities in 3D simulation domain
− Convert the 3D histogram into a regular grid scalar 

data
§ Bin frequencies represent particle density
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In Situ Statistical Feature Detection Pipeline
• Compute the particle density field from 

unstructured particle data
• Partition the density field based on 

homogeneity
− Simple Linear Iterative Clustering (SLIC) for 

generating partitioning
§ A fast local K-means algorithm that generates super-

pixels/voxels
§ Value variation inside partitions is minimized
§ The distance function considers both data and spatial 

coherence
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In Situ Statistical Feature Detection Pipeline
• Compute the particle density field from 

unstructured particle data
• Partition the density field based on 

homogeneity
• Model data values at each partition using a 

Gaussian distribution
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In Situ Statistical Feature Detection Pipeline
• Compute the particle density field from 

unstructured particle data
• Partition the density field based on 

homogeneity
• Model data values at each partition using 

a Gaussian distribution
• Compute statistical similarity of each 

partition with the user provided 
distribution of interest
− Use distribution similarity measures
§ e.g.: Bhattacharya distance, KL-divergence

• Compute a new scalar field where each 
location indicates how similar the point as 
to the target distribution



9

In Situ Statistical Feature Detection Pipeline

• Storage reduction: Raw particle data ~310GB vs 224MB storage needed by our method for 
100 timesteps

• We have a VTK filter that runs in situ with MFIX-Exa simulation using ParaView Catalysts

• A GPU-accelerated VTK-m filter version of this algorithm has also been developed to deploy it 
in Exascale machines

Raw particle data Particle rise velocity field

• Compute the particle rise velocity field from 
unstructured particle data
• A 3D histogram of particle x-velocity 

component
• Convert the 3D histogram into a regular 

grid scalar data
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Post Hoc Interactive Bubble Analysis
LA-UR-21-23925

More details about this visualization tool: https://github.com/cinemascience/cinema_viewers
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In Situ Performance Evaluation

Density 
and

velocity 
field

SLIC Similarity
field

Total in situ
computation

Total 
simulation

time

In situ
I/O

Simulation
I/O

2048 MPI
processes 

2.58 124.37 1.44 128.39 4408.6 14.60 504.85

In situ processing and I/O times (in seconds) taken by the proposed method 
compared to the simulation time

Density and
velocity field 

SLIC Similarity
field 

Total I/O

39420.87 59.27 144.57 3364.43

Post hoc timings (in seconds) for different steps of our pro-posed algorithm. 
By processing data in situ, timings shown in this table can be saved
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