U. S. Department of Energy – National Energy Technology Laboratory (NETL) 2023 Virtual Workshop on Multiphase Flow Science – Morgantown-WV-USA – August 1-2, 2023

Effects of particle Froude number on the sub-grid behavior of fluidized gas-particle flows

Chris C. Milioli, Fernando E. Milioli University of São Paulo - Brazil

At the 2021 NETL Multiphase Flow Science workshop we presented:

On the effect of particle Froude number in sub-grid modeling of gas-solid fluidized flows

Among the conclusions of that work we stated that:

Before new sub-grid models could be derived accounting for particle Froude number, further work would be required to account for: # higher domain average gas Reynolds numbers # a variety of domain average solid volume fractions

Those goals have been achieved, and related outcomes are now exposed in two presentations:

- 1) Results accounting for ranges of domain average gas Reynolds numbers and solid volume fractions, for a range of particle Froude numbers
- 2) New sub-grid models for effective drag, filtered and residual stresses

Presentation (1) follows next.

Filtered two-fluid modeling

We ultimately aim to provide sub-grid models for filtered two-fluid modeling.

$$\begin{aligned} \frac{\partial}{\partial t} (\rho_{g} \overline{\phi}_{g}) + \nabla \cdot (\rho_{g} \overline{\phi}_{g} \widetilde{\boldsymbol{v}}_{g}) &= 0 & \frac{\partial}{\partial t} (\rho_{s} \overline{\phi}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) = 0 \\ \frac{\partial}{\partial t} (\rho_{g} \overline{\phi}_{g} \widetilde{\boldsymbol{v}}_{g}) + \nabla \cdot (\rho_{g} \overline{\phi}_{g} \widetilde{\boldsymbol{v}}_{g} \widetilde{\boldsymbol{v}}_{g}) &= -\overline{\phi}_{g} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} - \nabla \cdot \boldsymbol{r}'_{g} - \overline{\boldsymbol{M}}_{I} + \rho_{g} \overline{\phi}_{g} \boldsymbol{g} \\ \frac{\partial}{\partial t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{\tau}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{s} (\rho_{s} \overline{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}) \right] \mathbf{I} - 2\mu_{g} \widetilde{\boldsymbol{s}}_{g} \\ \overline{\boldsymbol{\sigma}}_{s} = \left[\widetilde{\boldsymbol{P}}_{g} - (\lambda_{g} + \frac{2}{3}\mu_{g}) (\nabla \cdot \boldsymbol{v}_{s}) \right] \mathbf{I} - 2\mu_{s} \widetilde{\boldsymbol{s}}_{s} = P_{fil,s} \mathbf{I} - 2\mu_{fil,s} \widetilde{\boldsymbol{s}}_{s} \\ \mathbf{T}'_{\ell} = \rho_{\ell} \overline{\phi}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} - \rho_{\ell} \overline{\phi}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} = P_{res,\ell} \mathbf{I} - 2\mu_{res,\ell} \widetilde{\boldsymbol{s}}_{\ell} \\ \widetilde{\boldsymbol{s}}_{\ell} = \frac{1}{2} \left[\nabla \widetilde{\boldsymbol{v}}_{\ell} + (\nabla \widetilde{\boldsymbol{v}}_{\ell})^{T} \right] - \frac{1}{3} (\nabla \cdot \widetilde{\boldsymbol{v}}_{\ell}) \mathbf{I} \end{aligned}$$

Effective, filtered and residual closures

$$H = 1 - \frac{\beta_{eff}}{\overline{\beta}} \qquad \beta_{eff} = \frac{\beta(\mathbf{v}_{g} - \mathbf{v}_{s})}{(\widetilde{\mathbf{v}}_{g} - \widetilde{\mathbf{v}}_{s})}$$

$$P_{fil,s} = \frac{1}{3} tr \Big[\overline{P}_{s} - (\overline{\lambda_{s} + \frac{2}{3}\mu_{s}})(\nabla \cdot \mathbf{v}_{s}) \Big]$$

$$\mu_{fil,s} = \overline{\mu}_{s}$$

$$P_{res,\ell} = \frac{1}{3} tr(\mathbf{r}_{\ell}')$$

$$\mu_{res,\ell} = \frac{|\mathbf{r}_{shear,\ell}'|}{2|\widetilde{\mathbf{s}}_{shear,\ell}|}$$

We go for effective, filtered and residual parameters by filtering over predictions from highly resolved simulations (HRS) with microscopic two-fluid modeling.

$\frac{\partial}{\partial t} \left(\rho_{g} \phi_{g} \right) + \nabla \cdot \left(\rho_{g} \phi_{g} \boldsymbol{v}_{g} \right) = 0$ $\frac{\partial}{\partial t} (\rho_{\rm s} \phi_{\rm s}) + \nabla \cdot (\rho_{\rm s} \phi_{\rm s} \boldsymbol{\nu}_{\rm s}) = 0$ $\frac{\partial}{\partial_{t}} \left(\rho_{g} \phi_{g} \boldsymbol{v}_{g} \right) + \nabla \cdot \left(\rho_{g} \phi_{g} \boldsymbol{v}_{g} \boldsymbol{v}_{g} \right) = - \phi_{g} \nabla \cdot \boldsymbol{\sigma}_{g} - \boldsymbol{M}_{I} + \rho_{g} \phi_{g} \boldsymbol{g}$ $\frac{\partial}{\partial t} (\rho_{s} \phi_{s} \boldsymbol{v}_{s}) + \nabla \cdot (\rho_{s} \phi_{s} \boldsymbol{v}_{s} \boldsymbol{v}_{s}) = - \nabla \cdot \boldsymbol{\sigma}_{s} - \phi_{s} \nabla \cdot \boldsymbol{\sigma}_{g} + \boldsymbol{M}_{I} + \rho_{s} \phi_{s} \boldsymbol{g}$ $\boldsymbol{M}_{\mathrm{I}} = \beta \left(\boldsymbol{v}_{\mathrm{g}} - \boldsymbol{v}_{\mathrm{s}} \right)$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ S

Microscopic two-fluid modeling

On the basis of Anderson and Jackson' formulation, with microscopic closures as implemented into the MFIX code by Agrawal et al. (2001).

$$\boldsymbol{\sigma}_{\ell} = \left[\mathbf{P}_{\ell} - \left(\lambda_{\ell} + \frac{2}{3} \mu_{\ell} \right) \left(\nabla \cdot \boldsymbol{v}_{\ell} \right) \right] \boldsymbol{I} - 2\mu_{\ell}$$
$$\boldsymbol{s}_{\ell} = \frac{1}{2} \left[\nabla \boldsymbol{v}_{\ell} + \left(\nabla \boldsymbol{v}_{\ell} \right)^{\mathrm{T}} \right] - \frac{1}{3} \left(\nabla \cdot \boldsymbol{v}_{\ell} \right) \boldsymbol{I}$$

Microscopic closures

Drag

Wen and Yu (1966)

Solid phase pressure and viscous stresses Lun et al. (1984), as adapted by Agrawal et al. (2001)

Highly resolved simulations (MFIX) / filtering

Some results

Grayscale plots (in the statistical steady state regime) For a case with $\langle \phi_s \rangle = 0.15$ and $\langle \text{Re}_g \rangle / \langle \text{Re}_g \rangle_{susp} = 1$

[ϕ_s from 0 (white) to 0.64 (black) $\left|v_{g,y}/v_{t75}\right|$ from 0 (white) to >28.71 (black)

 $|(v_{g,y} - v_{s,y})/v_{t75}|$ from 0 (white) to >2.93 (black)]

$$\begin{split} \widetilde{v}_{slip,y}^{*} &= \left| \widetilde{v}_{slip,y} / v_{t75} \right| \\ \Delta_{f}^{*} &= \Delta_{f} / \left(v_{t75}^{2} / g \right) \\ Fr_{p} &= v_{t}^{2} / \left(gd_{p} \right) \end{split}$$

 10^{0}

 10^{-1}

 10^{-3}

 10^{-4}

 10^{0}

 10°

 10°

 10^{-2}

°°°° °°°° ≜°°°°

ы *10⁻⁷

Conclusions

• Flow heterogeneity grows with decreasing Fr_p (more refined structures; higher local velocity fluctuations)

Causing

- Higher H (higher corrections over homogeneous drag)
- Higher $\mu_{res,s}^*$, $\mu_{res,g}^*$ (velocity fluctuations/kinetic effects overcome collisional effects)
- Lower $P_{fil,s}^*$, $\mu_{fil,s}^*$, $P_{res,s}^*$, $P_{res,g}^*$ (collisional effects overcome velocity fluctuations/kinetic effects)
- As compared to the previous study, the present results show similar qualitative behaviors for all the concerning sub-grid parameters, while quantitative differences were observed in response to dissimilar non-local effects caused by the variety of macro-scale conditions that were practiced.

(refer to companion presentation for proposed sub-grid models)

Acknowledgements

This work was supported by CNPq FAPESP

Please direct any questions to milioli@sc.usp.br

Thank you very much!