U. S. Department of Energy – National Energy Technology Laboratory (NETL) 2023 Virtual Workshop on Multiphase Flow Science – Morgantown-WV-USA – August 1-2, 2023

Scale sensitive sub-grid models for effective drag, filtered and residual stresses in fluidized gas-particle flows

Chris C. Milioli, Fernando E. Milioli University of São Paulo - Brazil

At the 2021 NETL Multiphase Flow Science workshop we presented:

On the effect of particle Froude number in sub-grid modeling of gas-solid fluidized flows

Among the conclusions of that work we stated that:

Before new sub-grid models could be derived accounting for particle Froude number, further work would be required to account for: # higher domain average gas Reynolds numbers # a variety of domain average solid volume fractions

Those goals have been achieved, and related outcomes are now exposed in two presentations:

- 1) Results accounting for ranges of domain average gas Reynolds numbers and solid volume fractions, for a range of particle Froude numbers
- 2) New sub-grid models for effective drag, filtered and residual stresses

Presentation (2) follows next.

Filtered two-fluid modeling

We ultimately aim to provide sub-grid models for filtered two-fluid modeling.

$$\begin{split} \frac{\partial}{\partial t} (\rho_{g} \overline{\phi}_{g}) &+ \nabla \cdot (\rho_{g} \overline{\phi}_{g} \widetilde{\boldsymbol{v}}_{g}) = 0 \qquad \qquad \frac{\partial}{\partial t} (\rho_{s} \overline{\phi}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) = 0 \\ \frac{\partial}{\partial t} (\rho_{g} \overline{\phi}_{g} \widetilde{\boldsymbol{v}}_{g}) &+ \nabla \cdot (\rho_{g} \overline{\phi}_{g} \widetilde{\boldsymbol{v}}_{g} \widetilde{\boldsymbol{v}}_{g}) = -\overline{\phi}_{g} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} - \nabla \cdot \boldsymbol{r}'_{g} - \overline{\boldsymbol{M}}_{I} + \rho_{g} \overline{\phi}_{g} \boldsymbol{g} \\ \frac{\partial}{\partial t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{r}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{t} (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}) = -\nabla \cdot \overline{\boldsymbol{\sigma}}_{s} - \nabla \cdot \boldsymbol{\tau}'_{s} - \overline{\phi}_{s} \nabla \cdot \widetilde{\boldsymbol{\sigma}}_{g} + \boldsymbol{B}'_{gs} + \overline{\boldsymbol{M}}_{I} + \rho_{s} \overline{\phi}_{s} \boldsymbol{g} \\ \overline{\boldsymbol{\sigma}}_{s} (\rho_{s} \overline{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}_{s}) + \nabla \cdot (\rho_{s} \overline{\phi}_{s} \widetilde{\boldsymbol{v}}_{s} \widetilde{\boldsymbol{v}}) \right] \mathbf{I} - 2\mu_{g} \widetilde{\boldsymbol{s}}_{g} \\ \overline{\boldsymbol{\sigma}}_{s} = \left[\widetilde{\boldsymbol{P}}_{g} - (\lambda_{g} + \frac{2}{3}\mu_{g}) (\nabla \cdot \boldsymbol{v}_{s}) \right] \mathbf{I} - 2\mu_{g} \widetilde{\boldsymbol{s}}_{s} = P_{fil,s} \mathbf{I} - 2\mu_{fil,s} \widetilde{\boldsymbol{s}}_{s} \\ \mathbf{T}'_{\ell} = \rho_{\ell} \overline{\phi}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} - \rho_{\ell} \overline{\phi}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} \widetilde{\boldsymbol{v}}_{\ell} = P_{res,\ell} \mathbf{I} - 2\mu_{res,\ell} \widetilde{\boldsymbol{s}}_{\ell} \\ \widetilde{\boldsymbol{s}}_{\ell} = \frac{1}{2} \left[\nabla \widetilde{\boldsymbol{v}}_{\ell} + (\nabla \widetilde{\boldsymbol{v}}_{\ell})^{T} \right] - \frac{1}{3} (\nabla \cdot \widetilde{\boldsymbol{v}}_{\ell}) \mathbf{I} \end{aligned}$$

Effective, filtered and residual closures

$$H = 1 - \frac{\beta_{eff}}{\overline{\beta}} \qquad \beta_{eff} = \frac{\beta(\mathbf{v}_{g} - \mathbf{v}_{s})}{(\widetilde{\mathbf{v}}_{g} - \widetilde{\mathbf{v}}_{s})}$$

$$P_{fil,s} = \frac{1}{3} tr \Big[\overline{P}_{s} - (\overline{\lambda_{s} + \frac{2}{3}\mu_{s}})(\nabla \cdot \mathbf{v}_{s}) \Big]$$

$$\mu_{fil,s} = \overline{\mu}_{s}$$

$$P_{res,\ell} = \frac{1}{3} tr(\mathbf{r}_{\ell}')$$

$$\mu_{res,\ell} = \frac{|\mathbf{r}_{shear,\ell}'|}{2|\widetilde{\mathbf{s}}_{shear,\ell}|}$$

We go for effective, filtered and residual parameters by filtering over predictions from highly resolved simulations (HRS) with microscopic two-fluid modeling.

$\frac{\partial}{\partial t} \left(\rho_{g} \phi_{g} \right) + \nabla \cdot \left(\rho_{g} \phi_{g} \boldsymbol{v}_{g} \right) = 0$ $\frac{\partial}{\partial t} (\rho_{s} \phi_{s}) + \nabla \cdot (\rho_{s} \phi_{s} \boldsymbol{\nu}_{s}) = 0$ $\frac{\partial}{\partial_{t}} \left(\rho_{g} \phi_{g} \boldsymbol{v}_{g} \right) + \nabla \cdot \left(\rho_{g} \phi_{g} \boldsymbol{v}_{g} \boldsymbol{v}_{g} \right) = - \phi_{g} \nabla \cdot \boldsymbol{\sigma}_{g} - \boldsymbol{M}_{I} + \rho_{g} \phi_{g} \boldsymbol{g}$ $\frac{\partial}{\partial t} (\rho_{s} \phi_{s} \boldsymbol{v}_{s}) + \nabla \cdot (\rho_{s} \phi_{s} \boldsymbol{v}_{s} \boldsymbol{v}_{s}) = - \nabla \cdot \boldsymbol{\sigma}_{s} - \phi_{s} \nabla \cdot \boldsymbol{\sigma}_{g} + \boldsymbol{M}_{I} + \rho_{s} \phi_{s} \boldsymbol{g}$ $\boldsymbol{M}_{\mathrm{I}} = \beta \left(\boldsymbol{v}_{\mathrm{g}} - \boldsymbol{v}_{\mathrm{s}} \right)$ $\boldsymbol{\sigma}_{\ell} = \left[\mathbf{P}_{\ell} - \left(\lambda_{\ell} + \frac{2}{3} \mu_{\ell} \right) \left(\nabla \cdot \boldsymbol{v}_{\ell} \right) \right] \boldsymbol{I} - 2 \mu_{\ell} \boldsymbol{s}_{\ell}$

 $\boldsymbol{s}_{\ell} = \frac{1}{2} \left[\nabla \boldsymbol{v}_{\ell} + (\nabla \boldsymbol{v}_{\ell})^{\mathrm{T}} \right] - \frac{1}{3} \left(\nabla \cdot \boldsymbol{v}_{\ell} \right) \boldsymbol{I}$

Microscopic two-fluid modeling

On the basis of Anderson and Jackson' formulation, with microscopic closures as implemented into the MFIX code by Agrawal et al. (2001).

Microscopic closures

Drag

Wen and Yu (1966)

Solid phase pressure and viscous stresses Lun et al. (1984), as adapted by Agrawal et al. (2001)

Highly resolved simulations (MFIX) / filtering

- All periodic boundaries
- 16 x 16 cm domain
- 1.25 x 1.25 mm grid cells
- up to 4 x 4 cm filter sizes

Results

$$\begin{split} \widetilde{v}_{slip,y}^{*} &= \left| \widetilde{v}_{slip,y} / v_{t75} \right| \\ \Delta_{f}^{*} &= \Delta_{f} / \left(v_{t75}^{2} / g \right) \\ Fr_{p} &= v_{t}^{2} / \left(gd_{p} \right) \end{split}$$

$$H = \min[H_1, H_2] \qquad H_1 = \left(a_1 + \frac{a_2}{\left(\tilde{v}_{slip,y}^*\right)} + \frac{a_3}{\left(\tilde{v}_{slip,y}^*\right)^2}\right) \overline{\phi}_s^{\left(b_1 + \frac{b_2}{\left(\tilde{v}_{slip,y}^*\right)} + \frac{b_3}{\left(\tilde{v}_{slip,y}^*\right)^2}\right)}$$
$$H_2 = c_1 + c_2 \overline{\phi}_s$$

The various coefficients were presented in numerical form since no precise enough mathematical rules of correlation could be found.

$\widetilde{v}^{*}_{slip,y}$	< 0.8	
------------------------------	-------	--

Frp	$\Delta^*_{\mathbf{f}}$	a_1	a ₂	a ₃	b_1	b_2	b ₃	c_1	c_2
	1.028	0.9854	- 0.2496	0.02155	0.2483	- 0.04851	0.01608	1.6250	- 3.1250
	2.056	1.3470	- 0.3945	0.07045	0.2037	- 0.08908	0.04547	3.0769	- 7.6923
12.21	4.112	3.0220	- 1.6890	0.3178	0.2862	- 0.2219	0.07850	1.9583	- 4.1667
	6.168	3.2150	- 1.7820	0.3271	0.3906	- 0.2859	0.08462	1.7143	- 3.5714
	8.224	3.3330	- 1.8660	0.3409	0.4024	- 0.2989	0.08604	1.5313	- 3.1250
	1.028	1.7040	- 0.5144	0.05743	1.5330	- 0.3026	0.0701	5.0833	- 8.3333
	2.056	5.9680	- 3.2330	0.5615	1.4590	- 0.3163	0.1287	14.2500	- 25.0000
64.85	4.112	- 5.2010	4.3050	- 0.4414	- 1.5430	1.6020	- 0.1158	17.6667	- 33.3333
	6.168	- 8.9100	5.5750	- 0.2332	- 2.2630	1.8720	- 0.1006	10.0000	- 20.0000
	8.224	45.1000	- 34.5600	6.6860	- 1.2540	1.1070	0.03978	16.3333	- 33.3333
	1.028	0.8370	- 0.2250	0.01917	1.6980	- 0.1343	0.01282	4.6154	- 7.6923
	2.056	2.5740	- 0.5549	0.1240	1.0660	0.7769	0.01280	8.8571	- 14.2857
286.69	4.112	3.6660	- 1.6480	0.3834	0.4496	0.7892	0.07359	12.8000	- 20.0000
	6.168	10.3600	- 6.9670	1.4820	- 0.3457	1.2150	0.08068	21.3333	- 33.3333
	8.224	21.9600	-16.1200	3.2460	- 1.0910	1.6000	0.07133	16.0000	- 25.0000
	1.028	40.4200	- 22.9900	3.5350	11.5700	- 3.2870	0.5080	1.1636	- 1.8182
799.22	2.056	0.1136	0.4505	- 0.01229	0.08879	1.8980	- 0.1001	4.5714	- 7.1429
	4.112	1.6550	0.9124	0.04843	1.0920	3.2500	- 0.1753	12.4000	- 20.0000
	6.168	24.1600	- 51.7000	28.4400	3.3310	- 3.3320	3.6430	8.8571	- 14.2857
	8.224	0.2778	3.1140	0.2333	- 0.4787	4.8970	- 0.04863	10.3333	- 16.6667

 $\widetilde{v}^{*}_{s\,lip,y} \ \geq \ 0.8$

Frp	$\Delta^*_{\mathbf{f}}$	a_1	a_2	a ₃	b_1	b_2	b ₃	c_1	c_2
	1.028	0.9936	0.01384	- 0.1084	0.00261	0.2264	- 0.03508	1.6250	- 3.1250
12.21	2.056	1.0030	- 0.06721	0.001259	0.0006804	0.1089	0.005454	3.0769	- 7.6923
	4.112	1.0050	- 0.1141	0.02910	0.0007523	0.06413	0.009367	1.9583	- 4.1667
	6.168	0.9815	- 0.04778	- 0.005081	- 0.008357	0.07968	- 0.004212	1.7143	- 3.5714
	8.224	1.0260	- 0.2034	0.1048	0.005166	0.02557	0.0320	1.5313	- 3.1250
	1.028	1.0890	- 0.05508	0.02728	0.05604	0.7911	- 0.07715	5.0833	- 8.3333
	2.056	1.0690	- 0.06079	0.1826	0.03451	0.4012	0.1231	14.2500	- 25.0000
64.85	4.112	1.0380	- 0.03234	0.1445	0.02561	0.2478	0.1500	17.6667	- 33.3333
	6.168	1.0360	- 0.08281	0.1976	0.02734	0.1685	0.1924	10.0000	- 20.0000
	8.224	1.0320	- 0.1124	0.2470	0.02838	0.1181	0.2365	16.3333	- 33.3333
	1.028	1.3570	- 1.6210	0.6979	0.6291	0.1795	- 0.02427	4.6154	- 7.6923
	2.056	1.1690	- 0.1748	0.4089	0.1745	1.0320	0.2343	8.8571	- 14.2857
286.69	4.112	1.0970	- 0.1998	0.5041	0.07632	0.7575	0.3945	12.8000	- 20.0000
	6.168	1.0510	- 0.02845	0.4537	0.02634	0.8111	0.3702	21.3333	- 33.3333
	8.224	1.0170	0.1761	0.2892	- 0.009139	0.9301	0.2604	16.0000	- 25.0000
	1.028	1.1400	- 2.9500	2.3110	2.0100	- 5.8210	5.7340	1.1636	- 1.8182
	2.056	0.8188	1.9540	- 0.8404	- 0.02071	4.4780	- 0.9635	4.5714	- 7.1429
799.22	4.112	1.1010	- 0.6132	1.7310	0.07201	2.0530	1.5660	12.4000	- 20.0000
	6.168	0.5055	3.9500	- 1.7140	- 0.4612	5.4510	- 1.0690	8.8571	- 14.2857
	8.224	0.8726	1.6800	1.0220	- 0.3450	4.5040	0.1909	10.3333	- 16.6667

$$P_{fil,s}^{*} ; \ \mu_{fil,s}^{*} ; \ \mu_{res,s}^{*} = \left[a_{1} \left(\widetilde{v}_{slip,y}^{*} \right)^{a_{2}} + a_{3} \right] \overline{\varphi}_{s}^{\left[b_{1} \left(\widetilde{v}_{slip,y}^{*} \right)^{b_{2}} + b_{3} \right]} + c_{1}$$

$$\mathbf{P}_{\text{res},s}^* = \left[a_1 \left(\widetilde{\mathbf{v}}_{s \,\text{lip},y}^* \right)^{a_2} + a_3 \right] \exp \left\{ \left[b_1 \left(\widetilde{\mathbf{v}}_{s \,\text{lip},y}^* \right)^{b_2} + b_3 \right] \overline{\phi}_s \right\}$$

$$\mathbf{P}_{\text{res},g}^*; \ \boldsymbol{\mu}_{\text{res},g}^* = \left[a_1 \left(\widetilde{\mathbf{v}}_{\text{slip},y}^* \right)^2 + a_2 \left(\widetilde{\mathbf{v}}_{\text{slip},y}^* \right) + a_3 \right] \exp\left\{ \left[b_1 \left(\widetilde{\mathbf{v}}_{\text{slip},y}^* \right)^{b_2} + b_3 \right] \overline{\phi}_s \right\}$$

Aiming for a smaller set of equations, we correlate only to a most influential third parameter (in addition to the meso-scale markers):

$$\begin{array}{cccc} Fr_p & \text{for} & P_{fil,s}^* & \mu_{fil,s}^* \\ \Delta_f^* & \text{for} & P_{res,s}^* & \mu_{res,s}^* & P_{res,g}^* & \mu_{res,g}^* \end{array}$$

The various coefficients were presented in numerical form since no precise enough mathematical rules of correlation could be found.

	Fr _p	a_1	a_2	a ₃	b_1	b ₂	b ₃	c_1
D*	12.21	5.805e-2	3.505e0	5.811e-4	- 2.963e1	- 3.012e-2	3.115e1	0.0
	64.85	2.648e-1	2.251e0	0.0	- 2.887e0	- 2.709e-1	4.135e0	0.0
$P_{fil,s}$	286.69	2.302e-6	1.567e1	2.846e0	2.626e-1	1.477e0	5.498e-1	0.0
	799.22	0,0	0,0	1.490e1	0.0	0.0	1.2957e0	0.0
	12.21	2.831e-3	1.000e0	- 3.427e-4	- 7.160e-2	- 1.440e0	1.366e0	0.0
$\mu^*_{fil,s}$	64.85	3.987e-2	1.000e0	8.183e-3	- 1.004e-1	1.211e0	3.669e0	5.700e-4
	286.69	2.295e-1	8.817e-1	- 6.087e-2	- 1.049e-1	- 2.600e0	5.162e0	1.500e-3
	799.22	2.408e-3	4.990e0	6.539e-2	4.940e-1	1.517e0	2.280e0	1.700e-3

	Δ_{f}	a1	a_2	a ₃	b_1	b_2	b ₃	c_1
P [*] _{res s}	1.028	1.070e-2	1.321e0	1.742e-3	0.0	0.0	6.000e0	_
	2.056	3.422e-1	6.362e-2	- 3.008e-1	0.0	0.0	5.000e0	-
	4.112	3.682e-1	8.971e-2	- 2.806e-1	0.0	0.0	4.000e0	-
103,5	6.168	2.261e-1	2.381e-1	- 6.050e-2	0.0	0.0	3.000e0	_
	8.224	9.972e-2	6.553e-1	9.870e-2	0.0	0.0	3.000e0	-
	1.028	3.712e-1	1.000e0	1.508e-2	5.193e0	5.000e-2	- 3.856e0	0.0
*	2.056	1.225e0	3.900e-1	- 3.836e-1	- 1.282e-1	- 9.438e-1	1.350e0	0.0
μ_{ress}	4.112	1.131e0	3.725e-1	3.709e-1	0.0	0.0	1.000e0	0.0
100,0	6.168	4.255e-1	4.626e-1	1.041e0	0.0	0.0	7.000e-1	0.0
	8.224	1.903e-1	1.326e0	1.769e0	0.0	0.0	7.000e-1	0.0
	1.028	1.847e-4	- 1.943e-4	2.113e-4	- 4.935e-1	- 1.565e0	2.865e0	-
4	2.056	2.423e-4	- 2.688e-4	7.239e-4	- 5.492e0	- 3.458e-1	6.235e0	-
$P_{res \sigma}^*$	4.112	1.263e-3	- 3.373e-3	3.259e-3	- 2.817e0	-7.000e-1	2.681e0	_
100,B	6.168	1.778e-3	- 4.722e-3	4.818e-3	- 2.825e0	- 7.000e-1	2.003e0	_
	8.224	2.106e-3	- 5.653e-3	6.413e-3	- 4.537e0	- 4.500e-1	2.935e0	_
	1.028	- 6.672e-6	1.416e-4	9.345e-5	- 6.489e1	- 1.000e-2	6.469e1	_
$\mu^*_{res,g}$	2.056	7.645e-5	- 6.980e-5	5.178e-4	- 2.988e0	- 4.388e-1	3.485e0	_
	4.112	6.027e-4	- 1.523e-3	2.137e-3	- 1.132e0	- 1.037e0	1.519e0	_
	6.168	1.405e-3	- 3.069e-3	3.685e-3	- 1.379e-2	- 4.000e0	- 1.336e-3	-
	8.224	1.823e-3	- 3.886e-3	5.017e-3	- 1.536e-1	- 2.078e0	- 2.829e-1	-

Conclusions

- Accounting of the proposed sub-grid models:
 - $\checkmark~$ At the meso-scale: $\overline{\phi}_s$, $\,\widetilde{v}^*_{s\,lip,y}$ and Δ_f^*
 - ✓ At the micro-scale: Fr_p
 - $\checkmark~$ At the macro-scale: $\left<\phi_s\right>~$ and $\left< Re_g\right>~$ (in average)
- Possible improvements:
 - ✓ Account for alternative or additional micro-scale markers
 - ✓ Further assess number and type of meso-scale markers
 - ✓ Correlate to macro-scale markers

(refer to companion presentation for behavior analysis)

Acknowledgements

This work was supported by CNPq FAPESP

Please direct any questions to milioli@sc.usp.br

Thank you very much!