

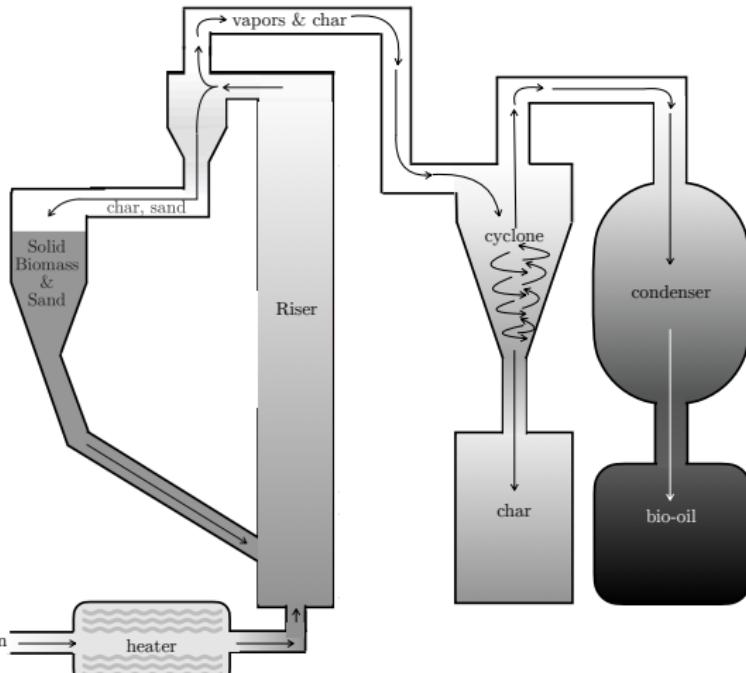
*Identification of compact closures
for the multiphase RANS equations,
with application to
strongly-coupled gas-solid flows*

Sarah Beetham

Mechanical Engineering, Oakland University

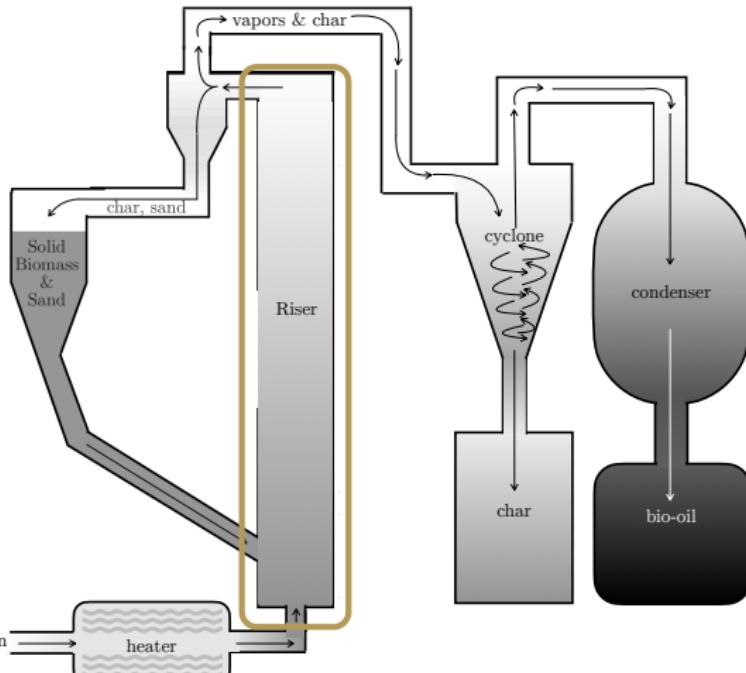
Fluidized bed reactors upgrade feedstock into usable fuel

While gas-solid flows are pervasive, we frame this work in the context of **fluidized bed reactors**.



Fluidized bed reactors upgrade feedstock into usable fuel

While gas-solid flows are pervasive, we frame this work in the context of **fluidized bed reactors**.



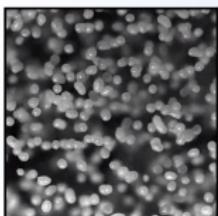
The multiscale challenge of a fluidized bed reactor

Microscale

Particle diameter: $O(10^{-4})$ [m]

Physics:

Wakes past particles,
Collisions,
Surface reactions,
Phase change,
Heat transfer



Experiments [4]

10⁻⁸ [1]

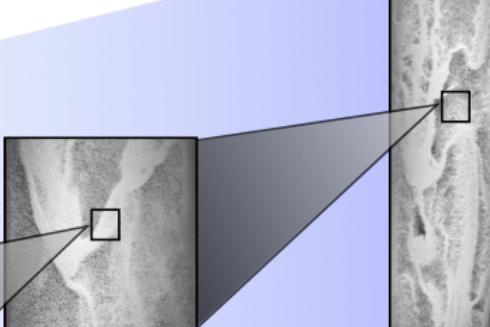
Mesoscale

Length scale: $O(10^{-2})$ to $O(10)$ m

number of particles: $> O(10)$

Clustering and bubbling

Turbulence modulation



length scale

22 [m]

Reactor geometry: $O(10)$ [m]
 Number of particles $O(10^{12})$

[4] Shaffer & Gopalan (2013)

The multiscale challenge of a fluidized bed reactor

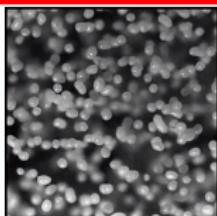
Microscale physics impact
macroscale quantities
of interest!

Microscale

Particle diameter: $O(10^{-4})$ [m]

Physics:

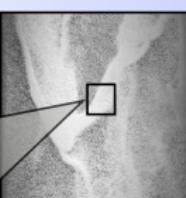
Wakes past particles,
Collisions,
Surface reactions,
Phase change,
Heat transfer



Experiments [4]

10⁻⁸ [m]

length scale



Mesoscale

Length scale: $O(10^{-2})$ to $O(10)$ m

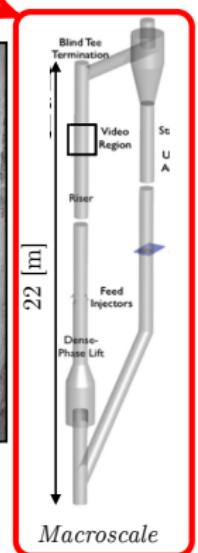
Number of particles: $> O(10^4)$

Clustering and bubbling

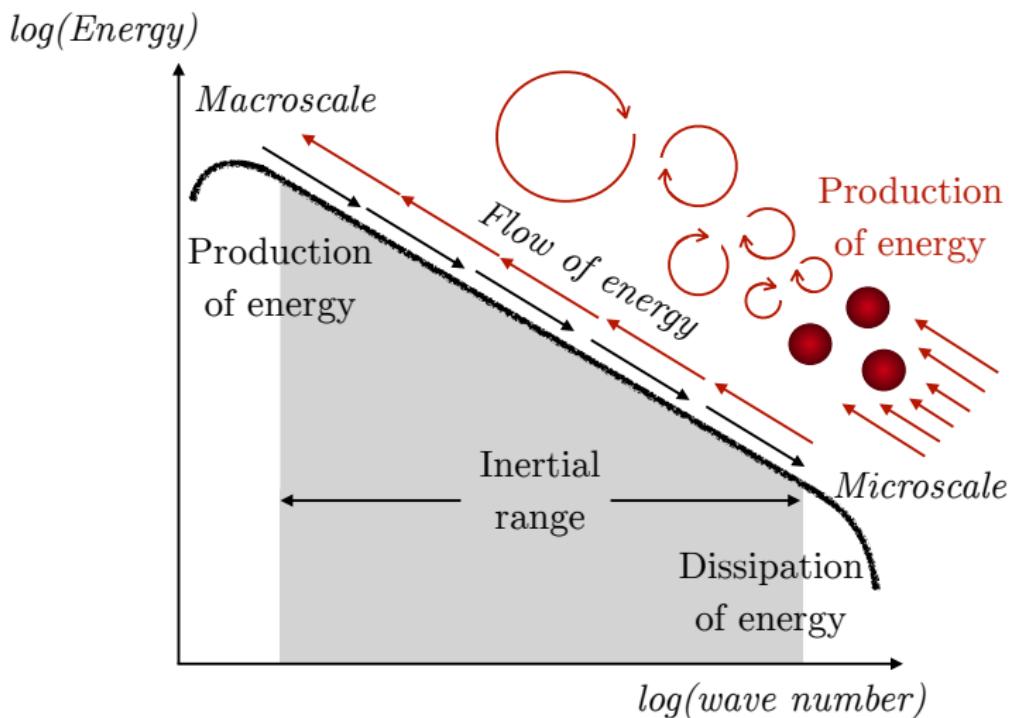
Turbulence modulation

Reactor geometry: $O(10)$ [m]

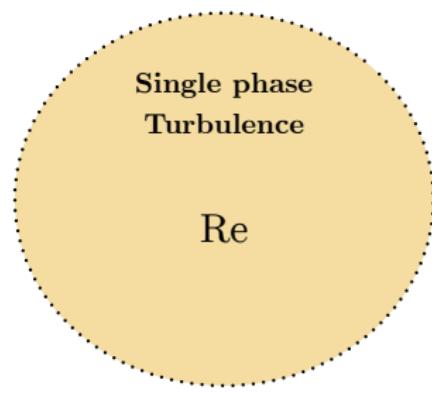
Number of particles $O(10^{12})$



The multiscale challenge of a fluidized bed reactor

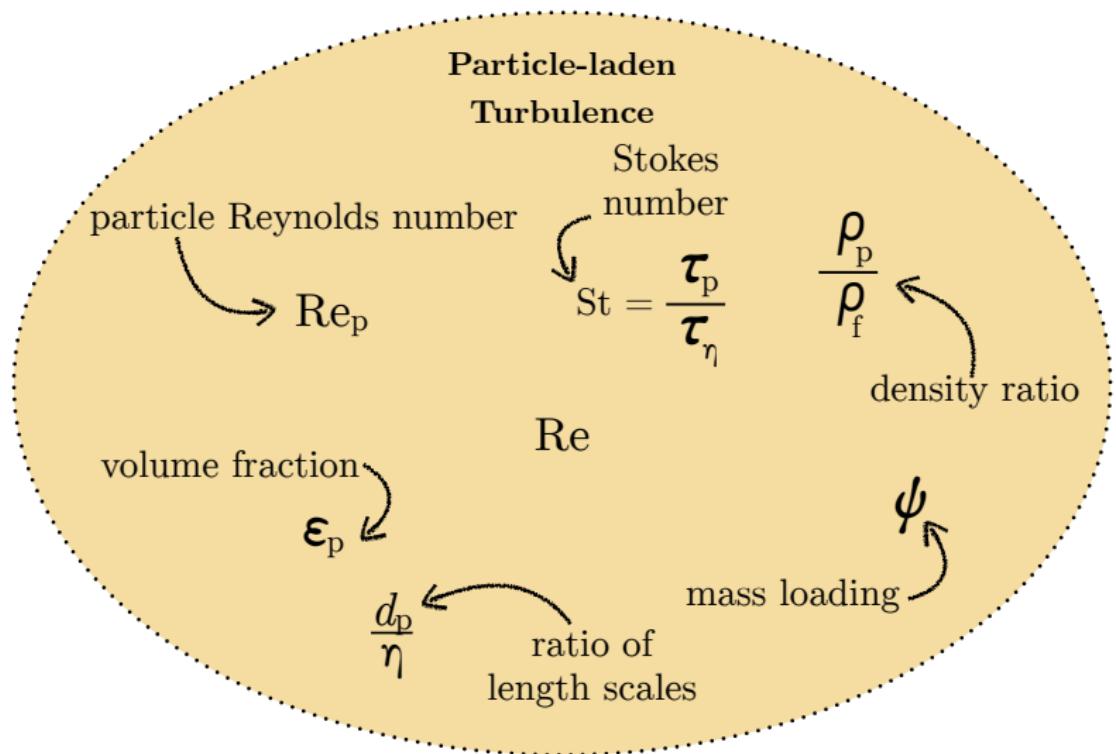


The multiscale challenge of a fluidized bed reactor



[4] Shaffer & Gopalan (2013)

The multiscale challenge of a fluidized bed reactor



Context
oo●oo

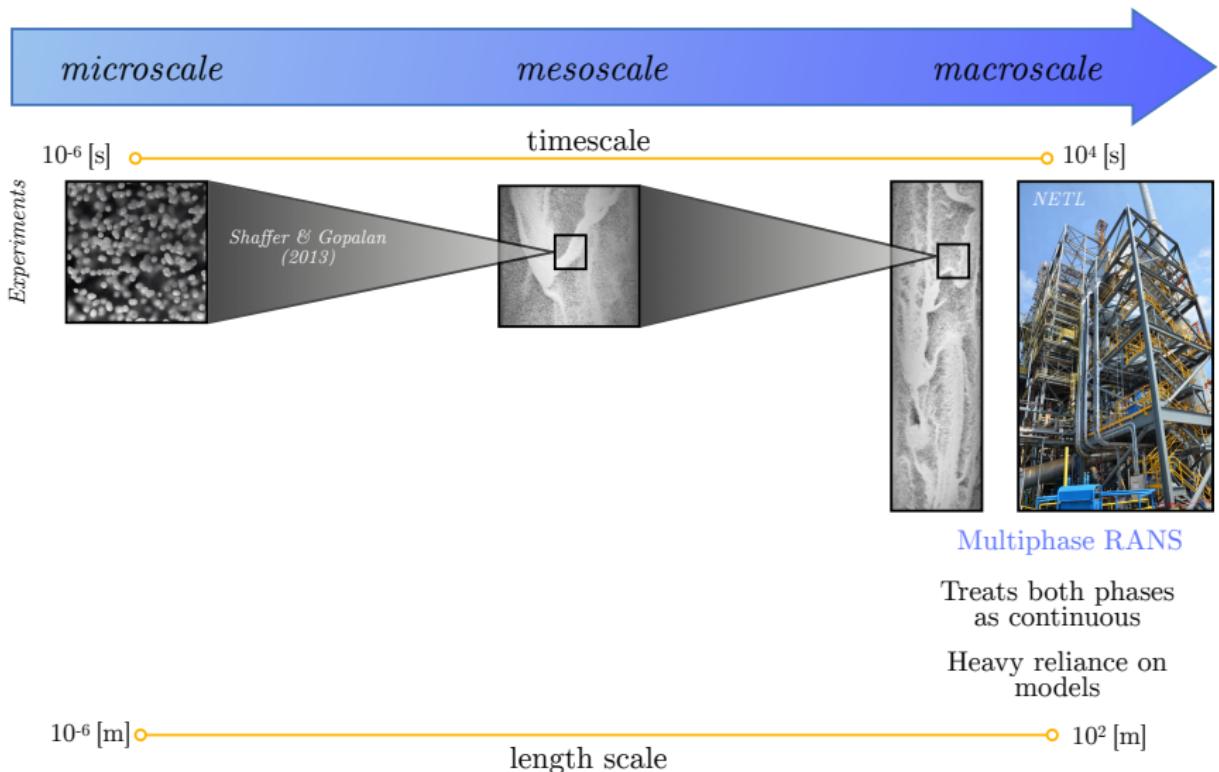
Configuration
oooo

Methodology
oooooo

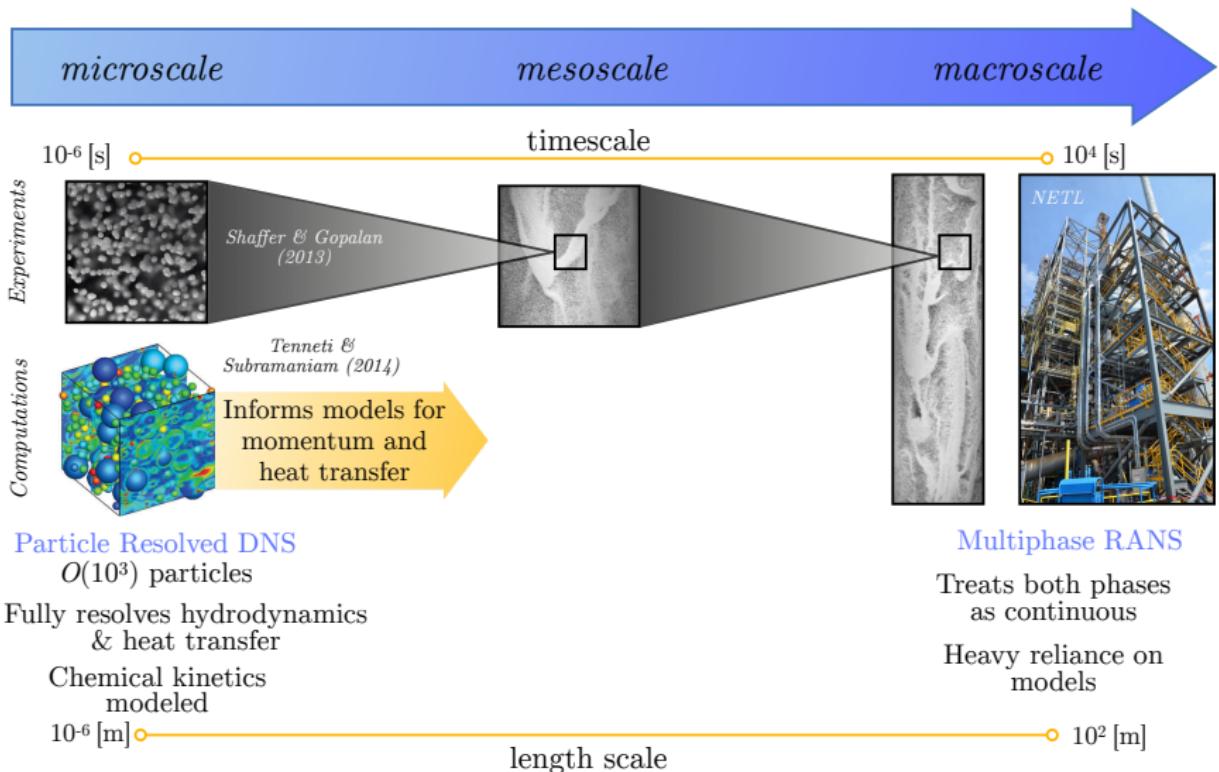
Results
oooooooooooo

Computational strategies vary
across scales of interest.

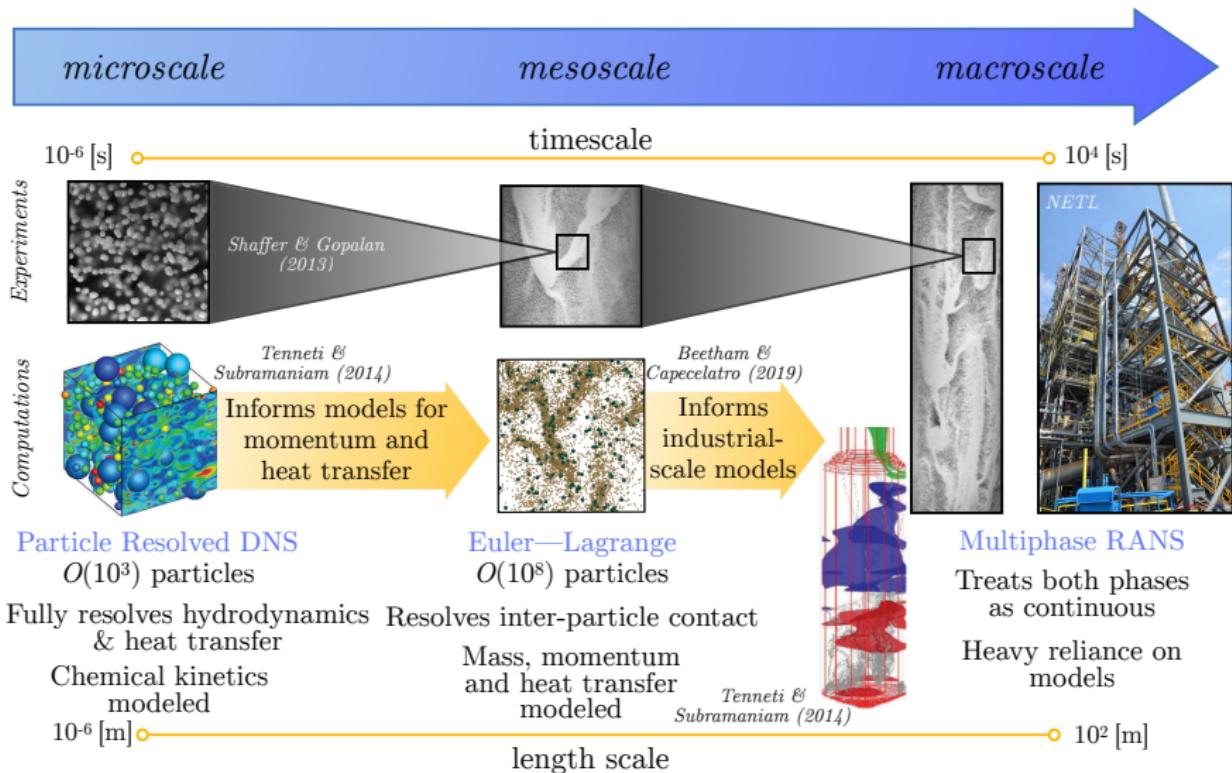
Modeling strategies at scales of interest



Modeling strategies at scales of interest



Modeling strategies at scales of interest

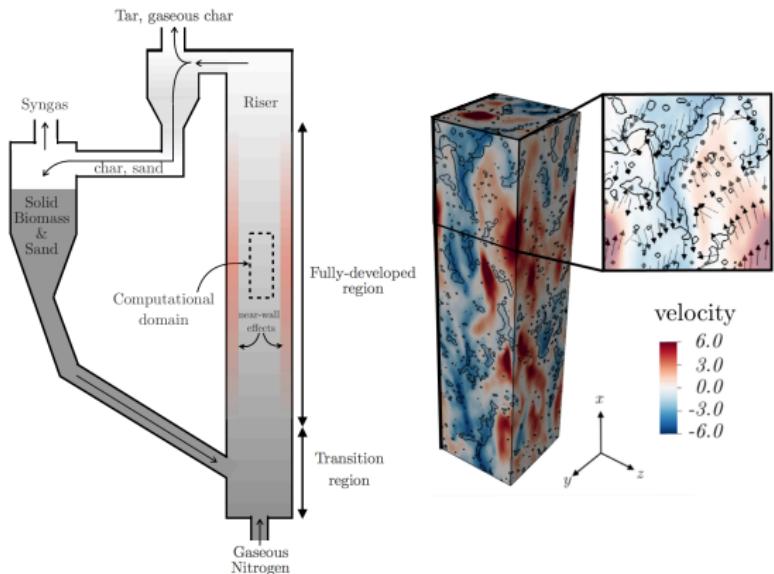


Simulating industrial-scale systems requires *improved models*.

To date, multiphase RANS models that are accurate across regimes, *do not exist*.

Modeling a canonical two-phase flow

Configuration under study: Gravity-driven gas-solid flow



Chosen because:

- 👉 Simple configuration where two-way coupling drives the turbulence.
- 👉 Directly related to the fully-developed, interior region of a circulating fluidized bed.

Modeling goals:

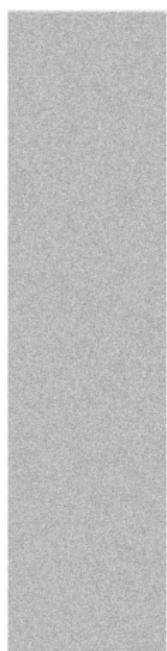
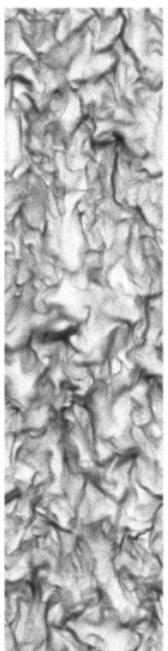
- 👉 learn interpretable, accurate models across **multiphase** flow conditions
- 👉 learn models that are robust to sparse training data

Modeling a canonical two-phase flow

Configuration under study: Gravity-driven gas-solid flow

$t = 0$

fully developed



Configuration details:

- Particles are initially randomly distributed in a quiescent gas
 - Particles fall under gravity and spontaneously form clusters

Density ratio:

$$\rho_B/\rho_f = 1000$$

Particle diameter: $d_p = 90\mu\text{m}$

$$\sigma = (0 \ 8 \ 2)$$

Gravity: $g = (0.8, 2.4, 8.0) \text{m/s}^2$

Volume fractions: $\langle \alpha_p \rangle = (0.1, 2.55, 5.0) \times 10^{-2}$

Mass loading: $\varphi = (1.0, 26.2, 52.6)$

Characteristic $\mathcal{L} = \tau_p g$:

cluster length: $(5 \times 10^{-4}, 1.5 \times 10^{-3}, 5 \times 10^{-3})$

Particle Reynolds $\text{Re}_p = \tau_p g d_p / \nu_f^2$:

(0.1, 0.3, 1)

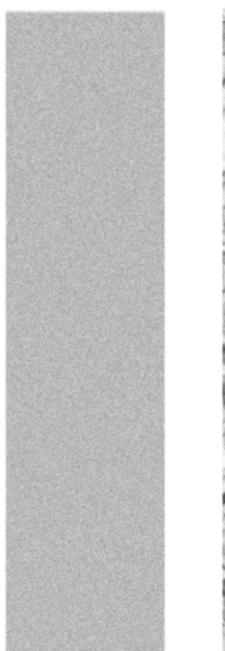
These parameters were chosen for consistency with fluidized bed conditions.

Modeling a canonical two-phase flow

Configuration under study: Gravity-driven gas-solid flow

$$t = 0$$

fully developed



Computational details:

NGA (Desjardins et al. (2008))

1. Fully-conservative, finite volume DNS/LES code
 2. Semi-implicit Crank-Nicolson for time advancement

Lagrangian Particle Tracking (Capecelatro et al. (2013))

1. Particle position and velocity calculated using Newton's second law
 2. Soft-sphere collisional model ($\epsilon = 0.85$)
 3. 2nd order Runge Kutta used for particle ODEs

Interphase exchange

1. Fluid and particles are coupled through drag and volume fraction
 2. Tenneti (2011) drag law (Re_p and α_p dependent) for interphase momentum exchange

Simulation details

1. Boundary Conditions: periodic in all directions
 2. Grid size: $(512 \times 128 \times 128)$
 3. $L_x/\mathcal{L} = (316, 105, 32)$
 4. Since fully periodic, mean mass flow rate is forced to 0

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume filtered, Euler-Lagrange equations.

- ☞ Time and spatial averages denoted by $\langle \cdot \rangle$.

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume filtered, Euler-Lagrange equations.

- ☞ Time and spatial averages denoted by $\langle \cdot \rangle$.
 - ☞ Phase averaging defined as $\langle (\cdot) \rangle_f = \langle \varepsilon_f(\cdot) \rangle / \langle \varepsilon_f \rangle$ and $\langle (\cdot) \rangle_p = \langle \varepsilon_p(\cdot) \rangle / \langle \varepsilon_p \rangle$.

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume filtered, Euler-Lagrange equations.

- ☞ Time and spatial averages denoted by $\langle \cdot \rangle$.
- ☞ Phase averaging defined as $\langle (\cdot) \rangle_f = \langle \varepsilon_f(\cdot) \rangle / \langle \varepsilon_f \rangle$ and $\langle (\cdot) \rangle_p = \langle \varepsilon_p(\cdot) \rangle / \langle \varepsilon_p \rangle$.
- ☞ Fluctuations from mean quantities: $(\cdot)''' = (\cdot) - \langle (\cdot) \rangle_f$ and $(\cdot)'' = (\cdot) - \langle (\cdot) \rangle_p$.

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume filtered, Euler-Lagrange equations.

- ☞ Time and spatial averages denoted by $\langle \cdot \rangle$.
- ☞ Phase averaging defined as $\langle (\cdot) \rangle_f = \langle \varepsilon_f(\cdot) \rangle / \langle \varepsilon_f \rangle$ and $\langle (\cdot) \rangle_p = \langle \varepsilon_p(\cdot) \rangle / \langle \varepsilon_p \rangle$.
- ☞ Fluctuations from mean quantities: $(\cdot)''' = (\cdot) - \langle (\cdot) \rangle_f$ and $(\cdot)'' = (\cdot) - \langle (\cdot) \rangle_p$.

Modeling a canonical two-phase flow

The multiphase RANS equations in the fluid-phase (Capecelatro et al. (2015)):

$$\frac{1}{2} \frac{\partial \langle u_f'''^2 \rangle_f}{\partial t} = \underbrace{\frac{1}{\rho_f} \left\langle p_f \frac{\partial \langle u_f''' \rangle}{\partial x} \right\rangle}_{\text{pressure strain (PS)}} - \underbrace{\frac{1}{\rho_f} \left\langle \sigma_{f,1i} \frac{\partial \langle u_f''' \rangle}{\partial x} \right\rangle}_{\text{viscous dissipation (VD)}} + \underbrace{\frac{\varphi}{\tau_p^*} \left(\langle u_f''' \rangle \langle u_p'' \rangle_p - \langle u_f'''^2 \rangle_p \right)}_{\text{drag exchange (DE)}} + \underbrace{\frac{\varphi}{\tau_p^*} \langle u_f''' \rangle \langle u_p \rangle_p}_{\text{drag production (DP)}} + \underbrace{\frac{\varphi}{\rho_p} \left\langle u_f''' \frac{\partial p_f'}{\partial x} \right\rangle_p}_{\text{pressure exchange (PE)}} - \underbrace{\frac{\varphi}{\rho_p} \left\langle u_f''' \frac{\partial \sigma_{f,1i}}{\partial x_i} \right\rangle_p}_{\text{viscous exchange (VE)}}$$

$$\frac{1}{2} \frac{\partial \langle v_f'''^2 \rangle_f}{\partial t} = \underbrace{\frac{1}{\rho_f} \left\langle p_f \frac{\partial \langle v_f''' \rangle}{\partial y} \right\rangle}_{\text{pressure strain (PS)}} - \underbrace{\frac{1}{\rho_f} \left\langle \sigma_{f,2i} \frac{\partial \langle v_f''' \rangle}{\partial x} \right\rangle}_{\text{viscous dissipation (VD)}} + \underbrace{\frac{\varphi}{\tau_p^*} \left(\langle v_f''' v_p''' \rangle_p - \langle v_f'''^2 \rangle_p \right)}_{\text{drag exchange (DE)}} +$$

$$\underbrace{\frac{\varphi}{\rho_p} \left\langle v_f''' \frac{\partial p_f'}{\partial y} \right\rangle_p}_{\text{pressure exchange (PE)}} - \underbrace{\frac{\varphi}{\rho_p} \left\langle v_f''' \frac{\partial \sigma_{f,2i}'}{\partial x_i} \right\rangle_p}_{\text{viscous exchange (VE)}}$$

Context

Configuration 0000

Methodology

Results

We cannot extend models from single phase or augment existing models. So, what is the best approach to modeling these systems?

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a model for \mathcal{D}_{ij} takes the form,

$$\mathcal{D}_{ij} = f \left(\beta^{(n)}, \mathcal{T}_{ij}^{(n)} \right) = \sum_n \beta^{(n)} \mathcal{T}_{ij}^{(n)}$$

where,

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a model for \mathcal{D}_{ij} takes the form,

$$\mathcal{D}_{ij} = f\left(\beta^{(n)}, \mathcal{T}_{ij}^{(n)}\right) = \sum_n \beta^{(n)} \mathcal{T}_{ij}^{(n)}$$

where,

- ☞ f is a *linear* function of candidate (basis) model functions $\mathcal{T}_{ij}^{(n)}$ which may be *nonlinear*,

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a model for \mathcal{D}_{ij} takes the form,

$$\mathcal{D}_{ij} = f\left(\beta^{(n)}, \mathcal{T}_{ij}^{(n)}\right) = \sum_n \beta^{(n)} \mathcal{T}_{ij}^{(n)}$$

where,

- ☞ f is a *linear* function of candidate (basis) model functions $\mathcal{T}_{ij}^{(n)}$ which may be *nonlinear*,
 - ☞ $\mathcal{T}_{ij}^{(n)}$ are based upon knowledge of physics,

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a model for \mathcal{D}_{ij} takes the form,

$$\mathcal{D}_{ij} = f\left(\beta^{(n)}, \mathcal{T}_{ij}^{(n)}\right) = \sum_n \beta^{(n)} \mathcal{T}_{ij}^{(n)}$$

where,

- ☞ f is a *linear* function of candidate (basis) model functions $\mathcal{T}_{ij}^{(n)}$ which may be *nonlinear*,
 - ☞ $\mathcal{T}_{ij}^{(n)}$ are based upon knowledge of physics,
 - ☞ $\beta^{(n)}$ are coefficients that at most depend (nonlinearly) on the principal invariants of $\mathcal{T}_{ij}^{(n)}$.

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a model for \mathcal{D}_{ij} takes the form,

$$\mathcal{D}_{ij} = f\left(\beta^{(n)}, \mathcal{T}_{ij}^{(n)}\right) = \sum_n \beta^{(n)} \mathcal{T}_{ij}^{(n)}$$

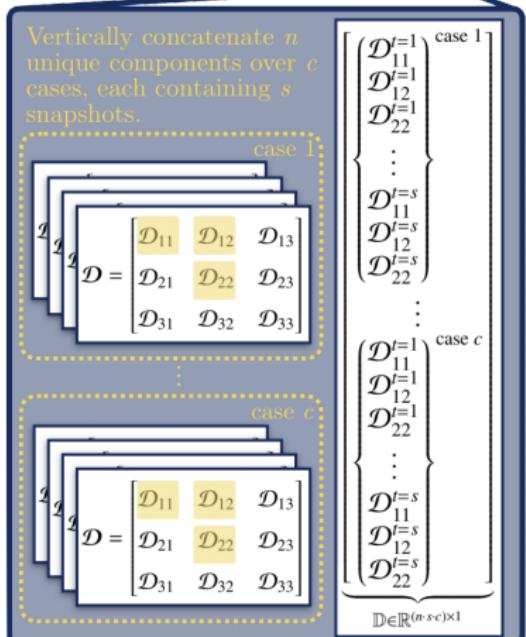
where,

- ☞ f is a *linear* function of candidate (basis) model functions $\mathcal{T}_{ij}^{(n)}$ which may be *nonlinear*,
 - ☞ $\mathcal{T}_{ij}^{(n)}$ are based upon knowledge of physics,
 - ☞ $\beta^{(n)}$ are coefficients that at most depend (nonlinearly) on the principal invariants of $\mathcal{T}_{ij}^{(n)}$.

The notion of using an invariant tensor basis for turbulence modeling was established in the 1970s (see, e.g., Pope (1975).)

Sparse regression with embedded form invariance

$$\mathbb{D} = \mathbb{T} \hat{\beta} \quad \left\{ \begin{array}{l} \text{A sparse vector of} \\ \text{coefficients} \end{array} \right\}$$



Vertically concatenate each of the tensors in a minimal integrity basis.

$$\left[\begin{array}{cccc} \mathcal{T}_{11}^{(1), t=1} & \mathcal{T}_{11}^{(2), t=1} & \dots & \mathcal{T}_{11}^{(g), t=1} \\ \mathcal{T}_{12}^{(1), t=1} & \mathcal{T}_{12}^{(2), t=1} & \dots & \mathcal{T}_{12}^{(g), t=1} \\ \mathcal{T}_{21}^{(1), t=1} & \mathcal{T}_{21}^{(2), t=1} & \dots & \mathcal{T}_{21}^{(g), t=1} \\ \vdots & \vdots & & \vdots \\ \mathcal{T}_{11}^{(1), t=s} & \mathcal{T}_{11}^{(2), t=s} & \dots & \mathcal{T}_{11}^{(g), t=s} \\ \mathcal{T}_{12}^{(1), t=s} & \mathcal{T}_{12}^{(2), t=s} & \dots & \mathcal{T}_{12}^{(g), t=s} \\ \mathcal{T}_{21}^{(1), t=s} & \mathcal{T}_{21}^{(2), t=s} & \dots & \mathcal{T}_{21}^{(g), t=s} \\ \mathcal{T}_{22}^{(1), t=s} & \mathcal{T}_{22}^{(2), t=s} & \dots & \mathcal{T}_{22}^{(g), t=s} \\ \vdots & \vdots & & \vdots \\ \mathcal{T}_{11}^{(1), t=1} & \mathcal{T}_{11}^{(2), t=1} & \dots & \mathcal{T}_{11}^{(g), t=1} \\ \mathcal{T}_{12}^{(1), t=1} & \mathcal{T}_{12}^{(2), t=1} & \dots & \mathcal{T}_{12}^{(g), t=1} \\ \mathcal{T}_{21}^{(1), t=1} & \mathcal{T}_{21}^{(2), t=1} & \dots & \mathcal{T}_{21}^{(g), t=1} \\ \mathcal{T}_{22}^{(1), t=1} & \mathcal{T}_{22}^{(2), t=1} & \dots & \mathcal{T}_{22}^{(g), t=1} \\ \vdots & \vdots & & \vdots \\ \mathcal{T}_{11}^{(1), t=s} & \mathcal{T}_{11}^{(2), t=s} & \dots & \mathcal{T}_{11}^{(g), t=s} \\ \mathcal{T}_{12}^{(1), t=s} & \mathcal{T}_{12}^{(2), t=s} & \dots & \mathcal{T}_{12}^{(g), t=s} \\ \mathcal{T}_{21}^{(1), t=s} & \mathcal{T}_{21}^{(2), t=s} & \dots & \mathcal{T}_{21}^{(g), t=s} \\ \mathcal{T}_{22}^{(1), t=s} & \mathcal{T}_{22}^{(2), t=s} & \dots & \mathcal{T}_{22}^{(g), t=s} \end{array} \right] \text{case 1}$$

$$\left[\begin{array}{cccc} \mathcal{T}_{11}^{(1), t=1} & \mathcal{T}_{11}^{(2), t=1} & \dots & \mathcal{T}_{11}^{(g), t=1} \\ \mathcal{T}_{12}^{(1), t=1} & \mathcal{T}_{12}^{(2), t=1} & \dots & \mathcal{T}_{12}^{(g), t=1} \\ \mathcal{T}_{21}^{(1), t=1} & \mathcal{T}_{21}^{(2), t=1} & \dots & \mathcal{T}_{21}^{(g), t=1} \\ \vdots & \vdots & & \vdots \\ \mathcal{T}_{11}^{(1), t=s} & \mathcal{T}_{11}^{(2), t=s} & \dots & \mathcal{T}_{11}^{(g), t=s} \\ \mathcal{T}_{12}^{(1), t=s} & \mathcal{T}_{12}^{(2), t=s} & \dots & \mathcal{T}_{12}^{(g), t=s} \\ \mathcal{T}_{21}^{(1), t=s} & \mathcal{T}_{21}^{(2), t=s} & \dots & \mathcal{T}_{21}^{(g), t=s} \\ \mathcal{T}_{22}^{(1), t=s} & \mathcal{T}_{22}^{(2), t=s} & \dots & \mathcal{T}_{22}^{(g), t=s} \\ \vdots & \vdots & & \vdots \\ \mathcal{T}_{11}^{(1), t=1} & \mathcal{T}_{11}^{(2), t=1} & \dots & \mathcal{T}_{11}^{(g), t=1} \\ \mathcal{T}_{12}^{(1), t=1} & \mathcal{T}_{12}^{(2), t=1} & \dots & \mathcal{T}_{12}^{(g), t=1} \\ \mathcal{T}_{21}^{(1), t=1} & \mathcal{T}_{21}^{(2), t=1} & \dots & \mathcal{T}_{21}^{(g), t=1} \\ \mathcal{T}_{22}^{(1), t=1} & \mathcal{T}_{22}^{(2), t=1} & \dots & \mathcal{T}_{22}^{(g), t=1} \\ \vdots & \vdots & & \vdots \\ \mathcal{T}_{11}^{(1), t=s} & \mathcal{T}_{11}^{(2), t=s} & \dots & \mathcal{T}_{11}^{(g), t=s} \\ \mathcal{T}_{12}^{(1), t=s} & \mathcal{T}_{12}^{(2), t=s} & \dots & \mathcal{T}_{12}^{(g), t=s} \\ \mathcal{T}_{21}^{(1), t=s} & \mathcal{T}_{21}^{(2), t=s} & \dots & \mathcal{T}_{21}^{(g), t=s} \\ \mathcal{T}_{22}^{(1), t=s} & \mathcal{T}_{22}^{(2), t=s} & \dots & \mathcal{T}_{22}^{(g), t=s} \end{array} \right] \text{case } c$$

$$\mathbb{T} \in \mathbb{R}^{(n \cdot c) \times g}$$

Sparse regression with embedded form invariance

$$\hat{\beta} = \min_{\beta} \underbrace{\|\mathbb{D} - \mathbb{T}\beta\|_2^2}_{\text{The } l\text{-2 norm regresses the coefficients to the data (OLS).}} + \underbrace{\lambda \|\beta\|_1}_{\text{The } l\text{-1 norm induces sparsity in the coefficients with increasing the tuning parameter, } \lambda.}$$

The $l\text{-2}$ norm regresses the coefficients to the data (OLS).

The $l\text{-1}$ norm induces sparsity in the coefficients with increasing the tuning parameter, λ .

We use the same optimization procedure as described in [6] Brunton et al. (2016)

Sparse regression with embedded form invariance

We can ensure form invariance due to

1. Linearity in the basis functions. This guarantees invariance^[7] upon Galilean rotation, \mathbf{Q}

$$\mathbf{Q}f(\beta_1 \mathcal{T}_{ij}^{(1)}, \beta_2 \mathcal{T}_{ij}^{(2)}, \dots) \mathbf{Q}^T = f(\beta_1 \mathbf{Q} \mathcal{T}_{ij}^{(1)} \mathbf{Q}^T, \beta_2 \mathbf{Q} \mathcal{T}_{ij}^{(2)} \mathbf{Q}^T, \dots)$$

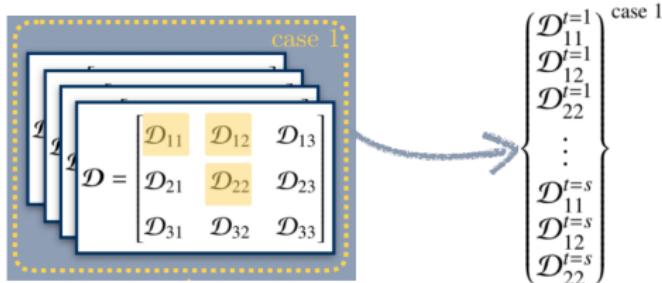
Sparse regression with embedded form invariance

We can ensure form invariance due to

1. Linearity in the basis functions. This guarantees invariance^[7] upon Galilean rotation, \mathbf{Q}

$$\mathbf{Q}f(\beta_1 \mathcal{T}_{ij}^{(1)}, \beta_2 \mathcal{T}_{ij}^{(2)}, \dots) \mathbf{Q}^T = f(\beta_1 \mathbf{Q} \mathcal{T}_{ij}^{(1)} \mathbf{Q}^T, \beta_2 \mathbf{Q} \mathcal{T}_{ij}^{(2)} \mathbf{Q}^T, \dots)$$

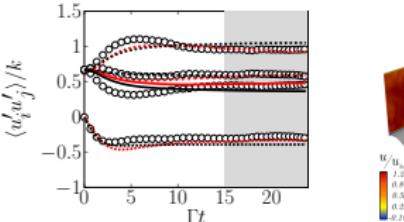
2. Formulating the problem as tall and skinny vectors. This ensures that β does not vary based on orientation.



Sparse regression learns accurate single phase models.

Our previous work has shown that sparse regression can formulate single-phase models that are:

- ☛ Accurate, even for flows with massive separation

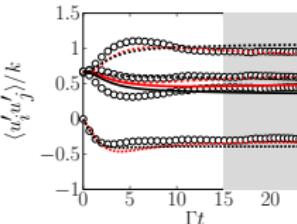
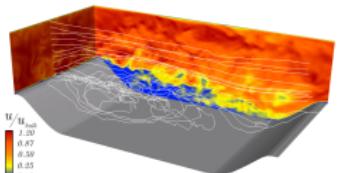
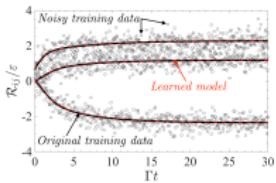
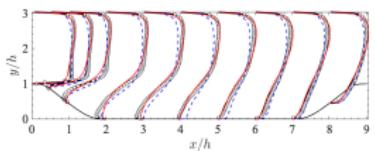


For more details see Beetham & Capecelatro (2020).

Sparse regression learns accurate single phase models.

Our previous work has shown that sparse regression can formulate single-phase models that are:

- Accurate, even for flows with massive separation
 - Robust to noisy and sparse training data

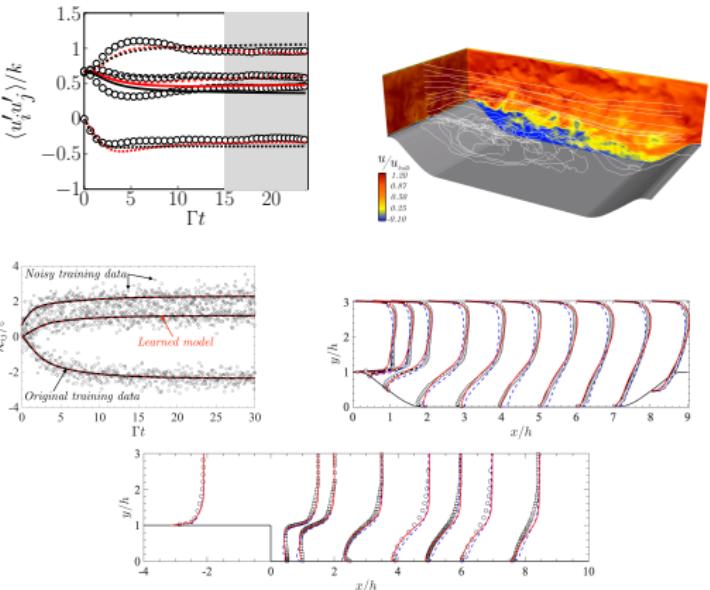


For more details see Beetham & Capecelatro (2020).

Sparse regression learns accurate single phase models.

Our previous work has shown that sparse regression can formulate single-phase models that are:

- Accurate, even for flows with massive separation
 - Robust to noisy and sparse training data
 - Accurate outside the scope of their training



For more details see Beetham & Capecelatro (2020).

Context

Configuration

Methodology

Results

We now extend this approach to gravity-driven gas-solid flows.

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 **unclosed** terms per phase.

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 ***unclosed*** terms per phase.

Rate of change of Reynolds stresses =

Pressure strain – Viscous diffusion +
 Drag exchange + Drag Production +
 Pressure exchange – Viscous exchange

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 ***unclosed*** terms per phase.

Rate of change of Reynolds stresses =

Pressure strain – Viscous diffusion +
 Drag exchange + Drag Production +
 Pressure exchange – Viscous exchange

Key challenges:

- ☞ Invariant basis has not yet been derived for this class of flows.

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 ***unclosed*** terms per phase.

Rate of change of Reynolds stresses =

$$\text{Pressure strain} = \text{Viscous diffusion} + \text{Drag exchange} + \text{Drag Production} + \text{Pressure exchange} - \text{Viscous exchange}$$

Key challenges:

- ☞ Invariant basis has not yet been derived for this class of flows.
 - ☞ Large parameter space and wide range of length and time scales.

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 **unclosed** terms per phase.

Rate of change of Reynolds stresses =

Pressure strain – Viscous diffusion +
 Drag exchange + Drag Production +
 Pressure exchange – Viscous exchange

Key challenges:

- ☞ Invariant basis has not yet been derived for this class of flows.
 - ☞ Large parameter space and wide range of length and time scales.
 - ☞ As configuration becomes more complex, the number of unclosed terms increases.

Modeling a canonical two-phase flow: Developing the basis

Challenge: An invariant basis, to date, has not been developed for this class of flows.

The following tensors are relevant for capturing flow physics:

(1) Particle-phase anisotropic stress tensor $\hat{\mathbb{R}}_p = \frac{\langle u_p''' u_p''' \rangle}{2k_p} - \frac{1}{3}\mathbb{I}$

Modeling a canonical two-phase flow: Developing the basis

Challenge: An invariant basis, to date, has not been developed for this class of flows.

The following tensors are relevant for capturing flow physics:

- (1) Particle-phase anisotropic stress tensor $\hat{\mathbb{R}}_p = \frac{\langle \mathbf{u}_p''' \mathbf{u}_p''' \rangle}{2k_p} - \frac{1}{3}\mathbb{I}$
- (2) Fluid-phase anisotropic stress tensor $\hat{\mathbb{R}}_f = \frac{\langle \mathbf{u}_f''' \mathbf{u}_f''' \rangle_f}{2k_f} - \frac{1}{3}\mathbb{I}$

Modeling a canonical two-phase flow: Developing the basis

Challenge: An invariant basis, to date, has not been developed for this class of flows.

The following tensors are relevant for capturing flow physics:

(1) Particle-phase anisotropic stress tensor

$$\hat{\mathbb{R}}_p = \frac{\langle \mathbf{u}_p''' \mathbf{u}_p''' \rangle}{2k_p} - \frac{1}{3}\mathbb{I}$$

(2) Fluid-phase anisotropic stress tensor

$$\hat{\mathbb{R}}_f = \frac{\langle \mathbf{u}_f''' \mathbf{u}_f''' \rangle_f}{2k_f} - \frac{1}{3}\mathbb{I}$$

(3) Slip velocity tensor

$$\hat{\mathbb{U}}_r = \frac{\mathbf{U}_r}{\text{tr}(\mathbf{U}_r)} - \frac{1}{3}\mathbb{I},$$

Here, $\mathbf{U}_r = \mathbf{u}_r \otimes \mathbf{u}_r$, where $\mathbf{u}_r = \langle \mathbf{u}_p \rangle_p - \langle \mathbf{u}_f \rangle_f$ is the slip velocity vector.

Finally, since all the terms we seek to model are symmetric, the basis that we form also must contain only symmetric tensors.

Modeling a canonical two-phase flow: Developing the basis

Following the procedure in [22] for developing invariant basis sets, we derive:

$\mathcal{T}^{(1)} = \mathbb{I}$	$\mathcal{T}^{(2)} = \hat{\mathbb{U}}_r$	$\mathcal{T}^{(3)} = \hat{\mathbb{U}}_r^2$
$\mathcal{T}^{(4)} = (\hat{\mathbb{U}}_r \hat{\mathbb{R}}_f)^\dagger$	$\mathcal{T}^{(5)} = (\hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_f)^\dagger$	$\mathcal{T}^{(6)} = (\hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_f^2)^\dagger$
$\mathcal{T}^{(7)} = (\hat{\mathbb{U}}_r \hat{\mathbb{R}}_f \hat{\mathbb{R}}_p)^\dagger$	$\mathcal{T}^{(8)} = (\hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_f \hat{\mathbb{R}}_p)^\dagger$	$\mathcal{T}^{(9)} = (\hat{\mathbb{R}}_f \hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_p)^\dagger$
$\mathcal{T}^{(10)} = (\hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_f^2 \hat{\mathbb{R}}_p)^\dagger$	$\mathcal{T}^{(11)} = (\hat{\mathbb{U}}_r \hat{\mathbb{R}}_f \hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_p)^\dagger$	$\mathcal{T}^{(12)} = (\hat{\mathbb{U}}_r \hat{\mathbb{R}}_f \hat{\mathbb{R}}_p \hat{\mathbb{U}}_r^2)^\dagger$
$\mathcal{T}^{(13)} = \hat{\mathbb{R}}_f^2$	$\mathcal{T}^{(14)} = \hat{\mathbb{R}}_f^2$	$\mathcal{T}^{(15)} = \hat{\mathbb{R}}_p$
$\mathcal{T}^{(16)} = \hat{\mathbb{R}}_p^2$	$\mathcal{T}^{(17)} = (\hat{\mathbb{U}}_r \hat{\mathbb{R}}_p)^\dagger$	$\mathcal{T}^{(18)} = (\hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_p)^\dagger$
$\mathcal{T}^{(19)} = (\hat{\mathbb{U}}_r \hat{\mathbb{R}}_p^2)^\dagger$	$\mathcal{T}^{(20)} = (\hat{\mathbb{U}}_r^2 \hat{\mathbb{R}}_p^2)^\dagger$	$\mathcal{T}^{(21)} = (\hat{\mathbb{R}}_f \hat{\mathbb{R}}_p)^\dagger$
$\mathcal{T}^{(22)} = (\hat{\mathbb{R}}_f^2 \hat{\mathbb{R}}_p)^\dagger$	$\mathcal{T}^{(23)} = (\hat{\mathbb{R}}_f \hat{\mathbb{R}}_p^2)^\dagger$	$\mathcal{T}^{(24)} = (\hat{\mathbb{R}}_f^2 \hat{\mathbb{R}}_p^2)^\dagger$
$\mathcal{S}^{(1)} = \text{tr}(\hat{\mathbb{U}}_r \hat{\mathbb{R}}_f^2 \hat{\mathbb{R}}_p^2)$	$\mathcal{S}^{(2)} = \text{tr}(\hat{\mathbb{U}}_r \hat{\mathbb{R}}_f \hat{\mathbb{R}}_p^2)$	$\mathcal{S}^{(3)} = \text{tr}(\hat{\mathbb{U}}_r \hat{\mathbb{R}}_f \hat{\mathbb{R}}_p)$
$\mathcal{S}^{(4)} = Ar$	$\mathcal{S}^{(5)} = \varphi$	$\mathcal{S}^{(6)} = \langle \alpha_p \rangle$

where $(\cdot)^\dagger = (\cdot) + (\cdot)^T$.

[22] Spencer et al. (1958)

Modeling a canonical two-phase flow: Drag production

Drag production, \mathcal{R}^{DP} , is the sole source of fluid-phase turbulent kinetic energy in the absence of mean shear.

$$\mathcal{R}^{\text{DP}} = \frac{\varphi}{\tau_p^*} \langle u_f''' \rangle_p \langle u_p \rangle_p$$

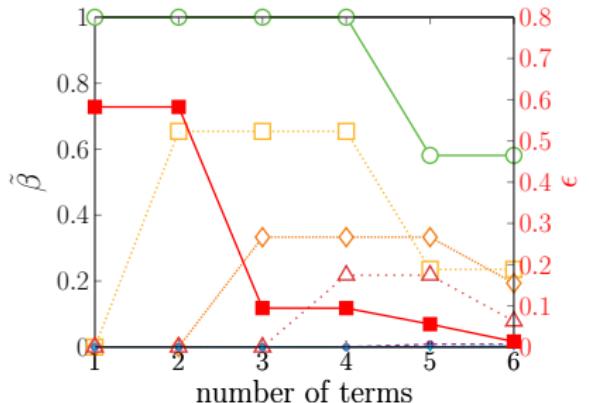
Phase averaging (PA) is defined as:

$$\langle (\cdot) \rangle_p = \frac{\langle \alpha_p (\cdot) \rangle}{\langle \alpha_p \rangle}$$

Where α_p is the particle volume fraction. Fluctuations about the PA velocity are denoted $u_f''' = u_p(x, t) - \langle u_f \rangle_p$.

- ☞ φ is the mass loading
- ☞ τ_p^* is the drag time
- ☞ $\langle u_f''' \rangle_p$ is the fluid phase velocity *seen by the particles*
- ☞ $\langle u_p \rangle_p$ is the phase averaged particle velocity

Modeling a canonical two-phase flow: Drag production



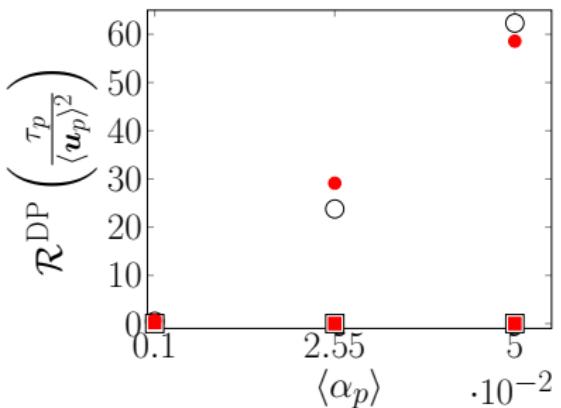
- Error is drastically reduced with a three terms and even further with six.
- Our method learns **interpretable** models. ✓

$$\mathcal{R}^{\text{DP}} = \frac{\langle u_p \rangle_p^2}{\tau_p} \left[\underbrace{1.11\varphi \hat{\mathbb{U}}_r}_{\text{term 1}} - \underbrace{0.73\varphi^{-2} \hat{\mathbb{U}}_r}_{\text{term 2}} + \underbrace{0.37\varphi \mathbb{I}}_{\text{term 3}} \right]$$

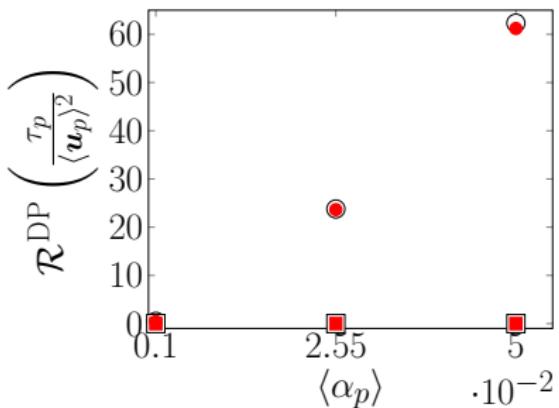
$$\mathcal{R}^{\text{DP}} = \frac{\langle u_p \rangle_p^2}{\tau_p} \left[\underbrace{0.65\varphi \hat{\mathbb{U}}_r}_{\text{term 1}} - \underbrace{0.26\varphi^{-2} \hat{\mathbb{U}}_r}_{\text{term 2}} + \underbrace{0.22\varphi \mathbb{I}}_{\text{term 3}} - \underbrace{0.09\varphi^{-2} \mathbb{I}}_{\text{term 4}} + \underbrace{0.01\varphi^2 \hat{\mathbb{U}}_r}_{\text{term 5}} + \underbrace{0.003\varphi^2 \mathbb{I}}_{\text{term 6}} \right]$$

Modeling a canonical two-phase flow: Drag production

Our method learned models that are
accurate across flow conditions. ✓



Three-term model



Six-term model

Cases shown correspond to $g = 0.8$ m/s
EL data: ○ (stream-wise), □ (cross stream)

Learned model: ● (stream-wise) ■ (cross stream)

Application to transient flow

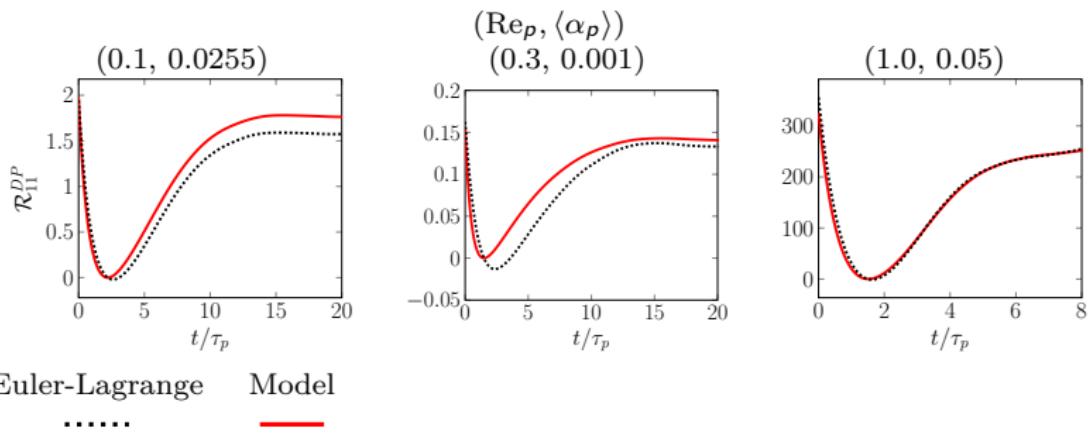
To assess model performance on temporally evolving flow, gravity is reversed.

$$\mathbf{g} = \begin{cases} (-g, 0, 0), & \text{if } t < 0 \\ (g, 0, 0), & \text{if } t \geq 0 \end{cases}.$$

Application to transient flow

To assess model performance on temporally evolving flow, gravity is reversed.

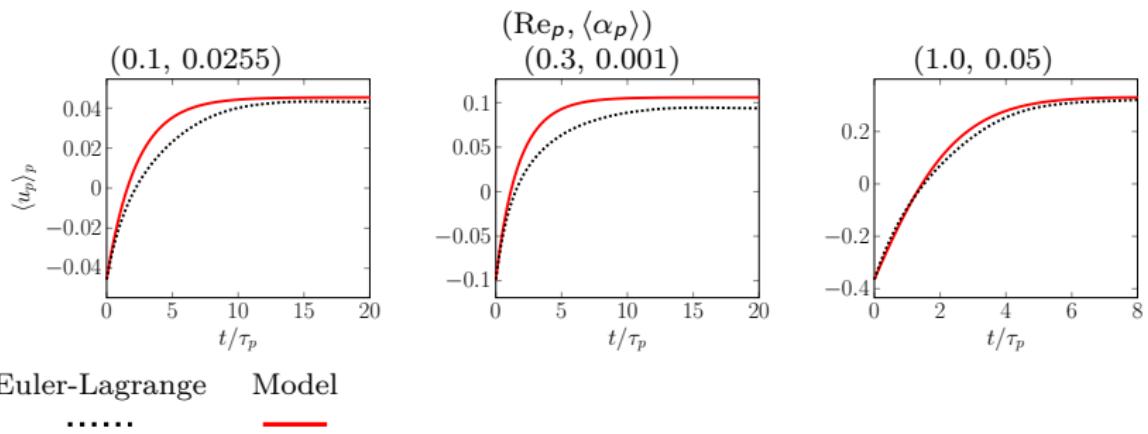
$$\mathbf{g} = \begin{cases} (-g, 0, 0), & \text{if } t < 0 \\ (g, 0, 0), & \text{if } t \geq 0 \end{cases}.$$



Application to transient flow

To assess model performance on temporally evolving flow, gravity is reversed.

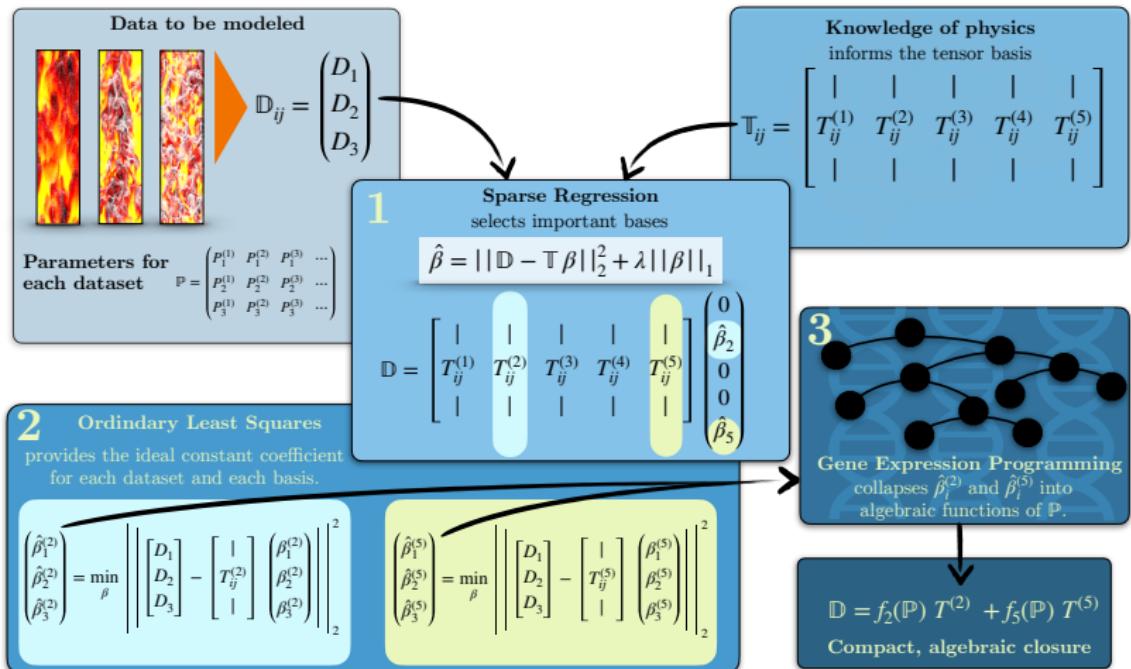
$$\mathbf{g} = \begin{cases} (-g, 0, 0), & \text{if } t < 0 \\ (g, 0, 0), & \text{if } t \geq 0 \end{cases}.$$



**Sparse regression alone is tedious
for determining non-constant
coefficients.**

Is there a better way?

GEP can be used to symbolically determine non-constant coefficients



GEP can be used to symbolically determine non-constant coefficients

GEP enabled Sparse regression:

- results in models with comparable accuracy to SR alone, but with a much higher degree of automation.

GEP can be used to symbolically determine non-constant coefficients

GEP enabled Sparse regression:

- results in models with comparable accuracy to SR alone, but with a much higher degree of automation.

Term	Sparse Regression		Sparse Regression + GEP	
	ϵ	Number of terms	ϵ	Number of terms
PS	0.15	3	0.06	3
DP	0.01	2	0.01	2
VD	0.07	4	0.09	2
DE	0.15	4	0.08	2

GEP can be used to symbolically determine non-constant coefficients

GEP enabled Sparse regression:

- results in models with comparable accuracy to SR alone, but with a much higher degree of automation.

Term	Sparse Regression		Sparse Regression + GEP	
	ϵ	Number of terms	ϵ	Number of terms
PS	0.15	3	0.06	3
DP	0.01	2	0.01	2
VD	0.07	4	0.09	2
DE	0.15	4	0.08	2

Recall the closure for Drag Production:

Sparse Regression alone:

$$\mathcal{R}^{\text{DP}} = \frac{\langle u_p \rangle_p^2}{\tau_p} (0.22\varphi - 0.09\varphi^{-2} + 0.003\varphi^3) \mathbb{I} + (0.65\varphi - 0.26\varphi^{-2} + 0.01\varphi^2) \hat{\mathbb{U}}_r$$

Sparse Regression + GEP:

$$\mathcal{R}^{\text{DP}} = \frac{\langle u_p \rangle_p^2}{\tau_p} \left(0.258\varphi + (0.03\varphi)^3 + 1.9 \frac{\langle \varepsilon_p \rangle}{\mathcal{S}^{(2)}} \right) \mathbb{I} + \left(1.9\varphi - 5.8\varphi^{1/2} \right) \hat{\mathbb{U}}_r$$

Questions?

*This work is supported by the GRFP and CBET 1846054.
Computations were carried out using HPC resources on
Stampede2 (XSEDE) through allocation TG-CTS200008.*