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Context Configuration Methodology Results

Fluidized bed reactors upgrade feedstock into usable fuel
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Context Configuration Methodology Results

The multiscale challenge of a fluidized bed reactor

Microscale

Mesoscale

length scale
102 [m]10-8 [m]

Macroscale

Particle diameter: O(10-4) [m]

Length scale: O(10-2) to O(10) m  
Number of particles: >O(104) 

Clustering and bubbling  
Turbulence modulation 

Number of particles O(1012)
Reactor geometry: O(10) [m] 

Physics:  
Wakes past particles,  
Collisions,  
Surface reactions,  
Phase change,  
Heat transfer 

22
 [m

] 

Single phase turbulence 
theory breaks down for 

multiphase flows.

Experiments [4]

[4] Shaffer & Gopalan (2013)
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Context Configuration Methodology Results

The multiscale challenge of a fluidized bed reactor
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The multiscale challenge of a fluidized bed reactor
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The multiscale challenge of a fluidized bed reactor
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Context Configuration Methodology Results

Computational strategies vary
across scales of interest.
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Modeling strategies at scales of interest
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Modeling strategies at scales of interest
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Context Configuration Methodology Results

Simulating industrial-scale
systems requires improved models.

To date, multiphase RANS models
that are accurate across regimes, do not exist.
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Context Configuration Methodology Results

Modeling a canonical two-phase flow
Configuration under study: Gravity-driven gas-solid flow

Chosen because:
Simple
configuration
where two-way
coupling drives the
turbulence.
Directly related to
the
fully-developed,
interior region of a
circulating
fluidized bed.

Modeling goals:
learn interpretable, accurate models across multiphase flow conditions
learn models that are robust to sparse training data
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Context Configuration Methodology Results

Modeling a canonical two-phase flow

Configuration under study: Gravity-driven gas-solid flow

t = 0 fully developed Configuration details:

Particles are initially randomly distributed in a
quiescent gas
Particles fall under gravity and spontaneously form
clusters

Density ratio: ρp/ρf = 1000
Particle diameter: dp = 90µm
Gravity: g = (0.8, 2.4, 8.0)m/s
Volume fractions: 〈αp〉 = (0.1, 2.55, 5.0)× 10−2

Mass loading: ϕ = (1.0, 26.2, 52.6)
Characteristic L = τpg :
cluster length: (5× 10−4, 1.5× 10−3, 5× 10−3)
Particle Reynolds Rep = τpgdp/ν2f :
number (0.1, 0.3, 1)

These parameters were chosen for consistency with fluidized bed conditions.
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Context Configuration Methodology Results

Modeling a canonical two-phase flow

Configuration under study: Gravity-driven gas-solid flow

t = 0 fully developed Computational details:
NGA (Desjardins et al. (2008))

1. Fully-conservative, finite volume DNS/LES code
2. Semi-implicit Crank-Nicolson for time advancement

Lagrangian Particle Tracking (Capecelatro et al. (2013))

1. Particle position and velocity calculated using Newton’s
second law

2. Soft-sphere collisional model (e = 0.85)
3. 2nd order Runge Kutta used for particle ODEs

Interphase exchange
1. Fluid and particles are coupled through drag and volume

fraction
2. Tenneti (2011) drag law (Rep and αp dependent) for

interphase momentum exchange
Simulation details

1. Boundary Conditions: periodic in all directions
2. Grid size: (512×128×128)
3. Lx/L = (316, 105, 32)

4. Since fully periodic, mean mass flow rate is forced to 0
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Context Configuration Methodology Results

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume
filtered, Euler-Lagrange equations.

Time and spatial averages denoted by 〈·〉.

Phase averaging defined as 〈(·)〉f = 〈εf (·)〉/〈εf 〉 and
〈(·)〉p = 〈εp(·)〉/〈εp〉.
Fluctuations from mean quantities: (·)′′′ = (·)− 〈(·)〉f and
(·)′′ = (·)− 〈(·)〉p .
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Context Configuration Methodology Results

Modeling a canonical two-phase flow
The multiphase RANS equations in the fluid-phase
(Capecelatro et al. (2015)):

1

2
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∂t
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1

ρf

〈
pf

∂〈u′′′f 〉
∂x

〉
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1

ρf
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+
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Context Configuration Methodology Results

We cannot extend models from
single phase or augment existing

models. So, what is the best
approach to modeling these

systems?
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Context Configuration Methodology Results

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a
model for Dij takes the form,

Dij = f
(
β(n), T (n)

ij

)
=

∑
n

β(n)T (n)
ij

where,

f is a linear function of candidate (basis) model functions
T (n)

ij which may be nonlinear,

T (n)
ij are based upon knowledge of physics,

β(n) are coefficients that at most depend (nonlinearly) on
the principal invariants of T (n)

ij .
The notion of using an invariant tensor basis for turbulence modeling was
established in the 1970s (see, e.g., Pope (1975).)
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Context Configuration Methodology Results

Sparse regression with embedded form invariance
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Context Configuration Methodology Results

Sparse regression with embedded form invariance

We use the same optimization procedure as described in [6] Brunton et al. (2016)
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Context Configuration Methodology Results

Sparse regression with embedded form invariance

We can ensure form invariance due to
1. Linearity in the basis functions. This guarantees invariance[7]
upon Galilean rotation, Q

Qf (β1T (1)
ij , β2T (2)

ij , ...)QT = f (β1QT (1)
ij QT, β2QT (2)

ij QT, ...)

2. Formulating the problem as tall and skinny vectors. This
ensures that β does not vary based on orientation.

[7] Speziale et al. (1990)
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Context Configuration Methodology Results

Sparse regression learns accurate single phase models.

Our previous work has shown that sparse regression can
formulate single-phase models that are:

Accurate, even for flows
with massive separation

Robust to noisy and sparse
training data

Accurate outside the scope
of their training

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

Γt

〈u
′ iu
′ j〉
/k

For more details see Beetham & Capecelatro (2020).
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Context Configuration Methodology Results

We now extend this approach to
gravity-driven gas-solid flows.
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Context Configuration Methodology Results

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 unclosed
terms per phase.

Rate of change of Reynolds stresses =
Pressure strain − Viscous diffusion +

Drag exchange + Drag Production +

Pressure exchange − Viscous exchange

Key challenges:
Invariant basis has not yet been derived for this class of
flows.
Large parameter space and wide range of length and time
scales.
As configuration becomes more complex, the number of
unclosed terms increases.

R.O. Fox (2014), Capecelatro et al. (2015)
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Context Configuration Methodology Results

Modeling a canonical two-phase flow: Developing the basis

Challenge: An invariant basis, to date, has not been
developed for this class of flows.

The following tensors are relevant for capturing flow physics:

(1) Particle-phase anisotropic stress tensor R̂p =
〈u′′′

p u′′′
p 〉

2kp
− 1

3
I

(2) Fluid-phase anisotropic stress tensor R̂f =
〈u′′′

f u′′′
f 〉f

2kf
− 1

3
I

(3) Slip velocity tensor Ûr = Ur
tr(Ur )

− 1
3
I,

Here, Ur = ur ⊗ ur , where ur = 〈up〉p − 〈uf 〉f is the slip velocity
vector.

Finally, since all the terms we seek to model are symmetric, the
basis that we form also must contain only symmetric tensors.
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Context Configuration Methodology Results

Modeling a canonical two-phase flow: Developing the basis

Following the procedure in [22] for developing invariant basis
sets, we derive:

where (·)† = (·) + (·)T.

[22] Spencer et al. (1958)
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Context Configuration Methodology Results

Modeling a canonical two-phase flow: Drag production

Drag production, RDP, is the sole source of fluid-phase
turbulent kinetic energy in the absence of mean shear.

RDP =
ϕ

τ?p
〈u′′′

f 〉p〈up〉p

Phase averaging (PA) is defined as:

〈(·)〉p =
〈αp(·)〉
〈αp〉

Where αp is the particle volume fraction.
Fluctuations about the PA velocity are
denoted u′′′

f = up(x, t)− 〈uf 〉f .

ϕ is the mass loading
τ?p is the drag time

〈u′′′
f 〉p is the fluid phase velocity

seen by the particles
〈up〉p is the phase averaged particle
velocity
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Context Configuration Methodology Results

Modeling a canonical two-phase flow: Drag production
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β̃
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0.7

0.8
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ε

Error is drastically reduced
with a three terms and
even further with six.
Our method learns
interpretable models. 3

RDP =
〈up〉2p
τp

1.11ϕÛr︸ ︷︷ ︸
term 1

− 0.73ϕ−2Ûr︸ ︷︷ ︸
term 2

+0.37ϕI︸ ︷︷ ︸
term 3



RDP =
〈up〉2p
τp

0.65ϕÛr︸ ︷︷ ︸
term 1

− 0.26ϕ−2Ûr︸ ︷︷ ︸
term 2

+0.22ϕI︸ ︷︷ ︸
term 3

− 0.09ϕ−2I︸ ︷︷ ︸
term 4

+0.01ϕ2Ûr︸ ︷︷ ︸
term 5

+0.003ϕ2I︸ ︷︷ ︸
term 6


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Context Configuration Methodology Results

Modeling a canonical two-phase flow: Drag production

Our method learned models that are
accurate across flow conditions. 3
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Cases shown correspond to g = 0.8 m/s
EL data: ◦ (stream-wise), � (cross stream)

Learned model: (stream-wise) (cross stream)
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Context Configuration Methodology Results

Application to transient flow

To assess model performance on temporally evolving flow,
gravity is reversed.

g =

{
(−g, 0, 0), if t < 0

(g, 0, 0), if t ≥ 0
.
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Context Configuration Methodology Results

Sparse regression alone is tedious
for determining non-constant

coefficients.
Is there a better way?
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Context Configuration Methodology Results

GEP can be used to symbolically determine non-constant coefficients

Data to be modeled Knowledge of physics
informs the tensor basis

Ordindary Least Squares

𝕋ij =
| | | | |

T (1)
ij T (2)

ij T (3)
ij T (4)

ij T (5)
ij

| | | | |

̂β(2)
1
̂β(2)
2
̂β(2)
3

= min
β

D1
D2
D3

−
|

T (2)
ij

|

β(2)
1

β(2)
2

β(2)
3

2

2

provides the ideal constant coefficient 
for each dataset and each basis.

̂β(5)
1
̂β(5)
2
̂β(5)
3

= min
β

D1
D2
D3

−
|

T (5)
ij

|

β(5)
1

β(5)
2

β(5)
3

2

2

𝔻ij =
D1
D2
D3

Sparse Regression

𝔻 =
| | | | |

T (1)
ij T (2)

ij T (3)
ij T (4)

ij T (5)
ij

| | | | |

0
̂β2

0
0
̂β5

̂β = | |𝔻 − 𝕋 β | |2
2 + λ | |β | |1

selects important bases

Parameters for 
each dataset ℙ =

P(1)
1 P(2)

1 P(3)
1 ⋯

P(1)
2 P(2)

2 P(3)
2 ⋯

P(1)
3 P(2)

3 P(3)
3 ⋯

Gene Expression Programming
collapses  and  into 
algebraic functions of .

̂β(2)
i

̂β(5)
i

ℙ

Compact, algebraic closure

𝔻 = f2(ℙ) T (2) + f5(ℙ) T (5)

1

2

3

Beetham & Capeclatro (2023)
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Context Configuration Methodology Results

GEP can be used to symbolically determine non-constant coefficients

GEP enabled Sparse regression:
results in models with comparable accuracy to SR alone,
but with a much higher degree of automation.

Sparse Regression Sparse Regression + GEP
Term ε Number of terms ε Number of terms

PS 0.15 3 0.06 3
DP 0.01 2 0.01 2
VD 0.07 4 0.09 2
DE 0.15 4 0.08 2

Recall the closure for Drag Production:
Sparse Regression alone:

RDP =
〈up〉2p
τp

(
0.22ϕ− 0.09ϕ−2 + 0.003ϕ3

)
I+

(
0.65ϕ− 0.26ϕ−2 + 0.01ϕ2

)
Ûr

Sparse Regression + GEP:

RDP =
〈up〉2p
τp

(
0.258ϕ+ (0.03ϕ)3 + 1.9

〈εp〉
S(2)

)
I+

(
1.9ϕ− 5.8ϕ1/2

)
Ûr
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Context Configuration Methodology Results

Questions?

This work is supported by the GRFP and CBET 1846054.
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Stampede2 (XSEDE) through allocation TG-CTS200008.
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