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Configuration Methodology Results

®0000

Fluidized bed reactors upgrade feedstock into usable fuel

While gas-solid flows are pervasive, we frame this work
in the context of fluidized bed reactors.
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Fluidized bed reactora upgrade feedatoch inlo usable fuel

While gas-solid flows are pervasive, we frame this work
in the context of fluidized bed reactors.
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Results

Configuration Methodolc
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The multiscale challenge of a fluidized bed reactor
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[4] Shaffer & Gopalan (2013)
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Configuration Methodolc Results

[e] Je]e]e]

The multiscale challenge of a fluidized bed reactor

Microacale physics impact
macroscale quantities
of interest!
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Collisions,
Surface reactions,
Phase change,
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Configuration Methodology Results
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The multiscale challenge of a fluidized bed reactor
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Single phase
Turbulence

[4] Shaffer & Gopalan (2013)
Q)
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'Ihenudtiacaleafaﬂuidizedbedreactor

Methodology
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Configuration Methodology Results
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Computational strategies vary
across scales of interest.
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Results
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[e]e]e] o]

Modeling strategies af scales of interest

microscale mesoscale

timescale

Experiments

Tenneti & Beetham &

§ Subramaniam (2014) Capecelatro (2019)

§ Informs models for Informs

2 momentum and industrial-

§ heat transfer scale models [}

Particle Resolved DNS Euler—Lagrange Multiphase RANS

0(103) particles O(108) particles

Fully resolves hydrodynamics Resolves inter-particle contact
& heat transfer

Treats both phases
as continuous

Mass, momentum Heavy reliance on

Chemic?il %{i(riletics and heat transfer . models
_ modele modeled  Subramaniam (201)
10-6 [m] 102 [m]

length scale
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Configuration Methodology Results
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Simulating industrial-scale
systems requires improved models.

To date, multiphase RANS models
that are accurate across regimes, do not exist.
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Context Configuration Methodology Results

Modeling a canonical two-phase flow
Configuration under study: Gravity-driven gas-solid flow

Tar, gaseous char

Chosen because:

* Simple
configuration
where two-way
coupling drives the

. ] [ [P decioned ‘_‘. turbulence.
Cdomain [ ) velocity [®¥ Directly related to
¥ N the
Ve : o :; fully-developed,
; )\ [y interior region of a
prasiton LY | circulating
i fluidized bed.
Niogen

Modeling goals:
¥~ learn interpretable, accurate models across multiphase flow conditions
*¥ Jearn models that are robust to sparse training data
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Configuration

0800
Modeling a canonical two-phase flow
Configuration under study: Gravity-driven gas-solid flow
Configuration details:
¥ Particles are initially randomly distributed in a

quiescent gas

¥~ Particles fall under gravity and spontaneously form

clusters
Density ratio: pp/ps = 1000
Particle diameter:  dp, = 90um
Gravity: g =1(0.8,2.4,8.0)m/s
Volume fractions:  {ap) = (0.1,2.55,5.0) x 102
Mass loading: » = (1.0,26.2,52.6)
Characteristic L=1pg:
cluster length: (5x1074,1.5 x 1073,5 x 10~3)
Particle Reynolds ~ Rep = 7pgdp/v?:
number (0.1,0.3,1)

These parameters were chosen for consistency with fluidized bed conditions.

@)
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Methodolc Results

Modeling a canonical two-phase flow
Configuration under study: Gravity-driven gas-solid flow

Computational details:

NGA (Desjardins et al. (2008))
1. Fully-conservative, finite volume DNS/LES code

2. Semi-implicit Crank-Nicolson for time advancement

1. Particle position and velocity calculated using Newton’s
second law

2. Soft-sphere collisional model (e = 0.85)
3. 2nd order Runge Kutta used for particle ODEs
Interphase exchange

1. Fluid and particles are coupled through drag and volume
fraction

2. Tenneti (2011) drag law (Rep and o) dependent) for
interphase momentum exchange

Simulation details

1. Boundary Conditions: periodic in all directions
Grid size: (512x128x128)
Ly/L = (316, 105, 32)

Since fully periodic, mean mass flow rate is forced to 0

Lagrangian Particle Tracking (Capecelatro et al. (2013))
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Context Configuration Methodology Results

[e]e] 1)

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume
filtered, Euler-Lagrange equations.

I Time and spatial averages denoted by ().
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Context Configuration Methodology Results

[e]e] 1)

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume
filtered, Euler-Lagrange equations.

I Time and spatial averages denoted by ().
= Phase averaging defined as ((-))r = (ef(-))/(ef) and

((Dp = {ep())/(ep)-
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Context Configuration Methodology Results

[e]e] 1)

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume
filtered, Euler-Lagrange equations.

I Time and spatial averages denoted by ().
B Phase averaging defined as ((-))r = (g¢(+))/(ef) and
(()p = (ep(-))/(ep)-
I Fluctuations from mean quantities: (-)” = (-) — ((-))¢ and

()" =) ={()ep -
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Context Configuration Methodology Results

[e]e] 1)

Modeling a canonical two-phase flow

The multiphase RANS are derived by averaging the volume
filtered, Euler-Lagrange equations.

I Time and spatial averages denoted by ().
B Phase averaging defined as ((-))r = (g¢(+))/(ef) and
(()p = (ep(-))/(ep)-
I Fluctuations from mean quantities: (-)” = (-) — ((-))¢ and

()" =) ={()ep -
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Results

Configuration Methodology

Context
[e]e]e] )

Modeling a canonical two-phase flow
The multiphase RANS equations in the fluid-phase
(Capecelatro et al. (2015)):

1 aquf"?) ¢ 1 a(uf") 1 A(uf") P, 112
2 et~ L - o \ T, + g ((“f Wup )p — (uf >P) +
pressure strain (PS) viscous dissipation (VD) drag exchange (DE)
> op’ dol ..
i \’\u/f//‘? (up)p + P <u;”ﬂ> _ r <u,/r” f,1/>
T3 Pp Ix o Pp Ox; »
NI— N ’ N —
viscous exchange (VE)

drag production (DP) pressure exchange (PE)

1 8(v;”2>f 1 a(vf"") 1 a(vi'") P "o 1112
Pham-ra Ly o or2i +¥((Vr’ vp op — (vf )p)""
—_——
pressure strain (PS) viscous dissipation (VD)  drag exchange (DE)

@ < " 8p§> © < " 3“F‘2/>

— A\ 5 - A\

Pp o [, Pp o [,

N N

pressure exchange (PE) viscous exchange (VE)
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Context Configuration Methodology Results
[e]e]e]e]e] [e]e]e]e] 00000 000000000000

We cannot extend models from
single phase or augment existing
models. So, what is the best
approach to modeling these
systems?
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Context Configuration Methodology Results

[o] Jele]e]e]

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a
model for Dj; takes the form,

Dj=f (5@)7 77j(n)) -y B<n)TU(n)

where,
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[o] Jele]e]e]

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a
model for Dj; takes the form,

Dj=f (5@)7 77j(n)) -y B<n)TU(n)

where,
I f is a linear function of candidate (basis) model functions

771.('7) which may be nonlinear,
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[o] Jele]e]e]

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a
model for Dj; takes the form,

Dj=f (g(n)7 77j(n)) -y B<n)TU(n)

where,
I f is a linear function of candidate (basis) model functions

771.('7) which may be nonlinear,

[~ 77j(n) are based upon knowledge of physics,
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[o] Jele]e]e]

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a
model for Dj; takes the form,

Dj=f (g(n)7 77j(n)) -y B<n)TU(n)

where,

I f is a linear function of candidate (basis) model functions
771.('7) which may be nonlinear,

[~ 77j(n) are based upon knowledge of physics,

= 3" are coefficients that at most depend (nonlinearly) on

the principal invariants of 77}").
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Context Configuration Methodology Results

[o] Jele]e]e]

Sparse regression with embedded form invariance

We employ a sparse regression approach that postulates that a
model for Dj; takes the form,

Dy =f (ﬁ(n)7 771,(”)) _ Zﬂ(n)ﬁj(n)

where,

I f is a linear function of candidate (basis) model functions
771.('7) which may be nonlinear,

[~ 77j(n) are based upon knowledge of physics,

= 3" are coefficients that at most depend (nonlinearly) on
the principal invariants of 77}").

The notion of using an invariant tensor basis for turbulence modeling was

established in the 1970s (see, e.g., Pope (1975).)
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Sparse regression with embedded form invariance

Dy D Dis
JD: Dy, Dy Dn
D31 D Dss
Du D D
o= Dy Dn Dy
D31 D Dss

—1 case |
thl

DeRsx1
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Results
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Vertically concatenate each of the tensors in
a minimal integrity basis.




Context Configuration Methodology Results

[e]e]e] Jele]

Sparse regression with embedded form invariance

B= rr}gi;LllD — TBI3}+ AllBl;

’T he [-2 norm regresses the
coefficients to the data (OLS).

The I-1 norm induces sparsity in the
coefficients with increasing the tuning
parameter, A

We use the same optimization procedure as described in [6] Brunton et al. (2016)

@)
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Context Configuration Methodology Results

[e]e]o]e] lo]

Sparse regression with embedded form invariance

We can ensure form invariance due to
1. Linearity in the basis functions. This guarantees invariancel”
upon Galilean rotation, Q

Qf (BT, 5.T,7..0Q" = F(5QT,"QT, 5QT,7Q", ..

@)
NET Multiphase Flow Workshop, ugust 12,2023 | 14



Context Configuration Methodology Results

[e]e]o]e] lo]

Sparse regression with embedded form invariance

We can ensure form invariance due to
1. Linearity in the basis functions. This guarantees invariancel”
upon Galilean rotation, Q

Qf (BT, 5.T,7..0Q" = F(5QT,"QT, 5QT,7Q", ..

2. Formulating the problem as tall and skinny vectors. This
ensures that § does not vary based on orientation.

;=11 case 1
T
D
=
D5
Dy Dy D3 .
9 .
D=Dy Dy» Dy t=s
Dy
Dy Dy Dy D
Dl

®; [7] Speziale et al. (1990)
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Context Configuration Methodology Results

00000e

Sparae regression learns accurale single phase models.

Our previous work has shown that sparse regression can

formulate single-phase models that are:
15—

¥ Accurate, even for flows
with massive separation

For more details see Beetham & Capecelatro (2020).
Q)
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Context Configuration Methodology Results

00000e

Sparae regression learns accurale single phase models.

Our previous work has shown that sparse regression can

formulate single-phase models that are:
15

¥~ Accurate, even for flows
with massive separation

¥~ Robust to noisy and sparse
training data

For more details see Beetham & Capecelatro (2020).
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Context Configuration Methodology Results

00000e

Sparae regression learns accurale single phase models.

Our previous work has shown that sparse regression can

formulate single-phase models that are:
15—

¥~ Accurate, even for flows
with massive separation

¥ Robust to noisy and sparse
training data

¥ Accurate outside the scope

of their training

For more details see Beetham & Capecelatro (2020).
Q)
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Context Configuration Methodology
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We now extend this approach to
gravity-driven gas-solid flows.
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Context Configuration Methodology

O®0000000000

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 unclosed
terms per phase.

@)
NET Multiphase Flow Workshop, ugust 12,2023 | 17



Methodology

O®0000000000

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 unclosed
terms per phase.

Pressure strain — Viscous diffusion +

Drag exchange + Drag Production +

Pressure exchar — Viscous exchange
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hodology

O®0000000000

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 unclosed
terms per phase.

Rate of change of Reynolds stresses =

Pressure strain — Viscous diffusion +

Drag exchange + Drag Production +

Pressure exchange — Viscous exchange
Tey challenges:
B Invariant basis has not yet been derived for this class of
flows.
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Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 unclosed
terms per phase.

Rate of change of Reynolds stresses =
Pressure strain — Viscous diffusion +

Drag exchange + Drag Production +
S S S

Pressure exchange — Viscous exchange

’I{ey challenqw:

B Invariant basis has not yet been derived for this class of
flows.

B Large parameter space and wide range of length and time
scales.
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O®0000000000

Modeling a canonical two-phase flow

The multiphase Reynolds stress equations contain 6 unclosed
terms per phase.

Rate of change of Reynolds stresses =
Pressure strain — Viscous diffusion +

Drag exchange + Drag Production +
S S S

Pressure exchange — Viscous exchange

’I{ey challenqw:

B Invariant basis has not yet been derived for this class of
flows.

B Large parameter space and wide range of length and time
scales.

= As configuration becomes more complex, the number of

unclosed terms increases.
@y RO Fox (2014), Capecelatro et al. (2015)
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Context Configuration Methodology

O0®000000000

Modeling a canonical two-phase flow: Developing the basis

Challenge: An invariant basis, to date, has not been
developed for this class of flows.

The following tensors are relevant for capturing flow physics:

e 11’
R

(1) Particle-phase anisotropic stress tensor R, = T éH
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Context Configuration Methodology

O0®000000000

Modeling a canonical two-phase flow: Developing the basis

Challenge: An invariant basis, to date, has not been
developed for this class of flows.

The following tensors are relevant for capturing flow physics:

(u/// u///>

(1) Particle-phase anisotropic stress tensor Rp = b= - éH
. "1 p///>
(2) Fluid-phase anisotropic stress tensor Rf = Mziz)’:f - %]I
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Context Configuration Methodology

O0®000000000

Modeling a canonical two-phase flow: Developing the basis

Challenge: An invariant basis, to date, has not been
developed for this class of flows.

The following tensors are relevant for capturing flow physics:

111 117
article-phase anisotropic stress tensor =Y % ) i1
(1) Particle-ph pic st t Rp ¢ o
N "1 P
(2) Fluid-phase anisotropic stress tensor Rf = Mziw — %]I
(3) Slip velocity tensor U, = WOy~ %]17

Here, U, = u, ® u,, where u, = (up), — (us)y is the slip velocity
vector.

Finally, since all the terms we seek to model are symmetric, the
basis that we form also must contain only symmetric tensors.
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Context Configuration Methodology

000000000000

Modeling a canonical two-phase flow: Developing the basis

Following the procedure in [22] for developing invariant basis
sets, we derive:

TW =1 T® =10, TG =172

7@ = (0, Rf) 76 — (028 ) TO = IEJ%JR;)f
TO = (UT]RIR ) T® = ( 2R,R, ) TO = (R,lsz]fe,,)7

T (UiR?R ) TaN= (U R’ 02R ) TO)= (0,R,R,02)

T3 = ]Rf T4 = ]R2 T(15)=Rp

709 2 Tan= (U &)’ TU= (028,)’

7= (0.82)' Teo- (0282)' TeV= (R/R,)'

e (R3R,)! e (,R2)' Te0= (R3R2)'
SW=tr (0,R2R2) s®=tr (0,R,R2) SO=tr (0,RR,)
SW=Ar S®=¢ SO = (a,)

where ()7 = (-) + ()T.
[22] Spencer et al. (1958)
Q)
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Context Configuration Methodology

O000@0000000

Modeling a canonical two-phase flow: Drag preduction

Drag production, RPF, is the sole source of fluid-phase
turbulent kinetic energy in the absence of mean shear.

RPP = 20 (up)

*
Tp

Phase averaging (PA) is defined as:

seen by the particles

®¥  is the mass loading
(ap()) [~ 75 is the drag time
(e = (ap) D& (u!"), is the fluid phase velocity
[~

Where a, is the particle volume fraction.
Fluctuations about the PA velocity are
denoted uf’ = up(x,t) — (uf)f.

(up)p is the phase averaged particle
velocity

NET] Multiphase Flow Workshop, ugust 1-2, 2023 |
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Context Configuration Methodology

[e]e]e]e]e] Jeje]ele]e]e]

Modeling a canonical two-phase flow: Drag preduction

B Error is drastically reduced
with a three terms and
even further with six.

= Our method learns
interpretable models.

s}
number of terms

2
u - ~
RPP — (Un) 1.11o0, — 0.73¢0 20, 4+ 0.37¢l
Tp — —— =
2
u N - ~
RPP = (uplp 0.65¢U, — 0.260~2U, + 0.22 — 0.090 21+ 0.01x%U, 4 0.003,21
Tp ~_— YV Y~ Y Y Y

term 4 term 5 term 6
Q)
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Context Configuration Methodology

[e]o]e]e]e]e] Jeolele]e]e]

Modeling a canonical two-phase flow: Drag preduction

Our method learned models that are

60| | | 60| | © ]
~N50) 1 50
SEE | &3 40
~— 30! . ~— 30|

5 20 © 5 20 ©

& o R g

lni 285 5 lni 255 5

(ap) 1072 (ap) 102

Three-term model Six-term model

Cases shown correspond to g = 0.8 m/s
EL data: o (stream-wise), O (cross stream)

Learned model: ® (stream-wise) M (cross stream)
Q)
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fipplication to transient flow

To assess model performance on temporally evolving flow,
gravity is reversed.

~ [(~£,0,0), ift<0
£ 0,0, ife>o0

@)
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Context Configuration Methodology

[e]o]e]e]e]e]e] Jele]e]e]

fipplication to transient flow
To assess model performance on temporally evolving flow,

gravity is reversed.

o (—g,0,0), ift<0
£ 10,0, ift>0

(Rep, <0‘p>)
(0.1, 0.0255) (0.3, 0.001) (1.0, 0.05)

o
el

5 10 152 B 10 15 2 0
t/my t/m t/y
Euler-Lagrange  Model
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Context Configuration Methodology

[e]o]e]e]e]e]e] Jele]e]e]

fipplication to transient flow

To assess model performance on temporally evolving flow,
gravity is reversed.

o (—g,0,0), ift<0
£ 10,0, ift>0

(Rep, <ap>)
(0.1, 0.0255) (0.3, 0.001) (1.0, 0.05)

)y 5 10 15 2
t/m

Euler-Lagrange  Model
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Context Configuration Methodology
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Sparse regression alone is tedious
for determining non-constant
coefficients.

Is there a better way?
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Methodology

GEP can be used to symbolically determine non-constant coefficients

Data to be modeled Knowledge of physics
Y R D informs the tensor basis
1
‘ oo Lo
o= 23
i ij = T(l) T(2) T(3) ]"(4) ]"(5)
R D, Ty =
@ ‘ [

Sparse Regresslon

selects important bases

B O [ ’ B=1ID=TAIL+Al1811,
P=

each dataset =[P PR PP ..
P PR PO .

I | R |
_ 1 2) 7@ @ s
D= 70 77 TP TP T

2 Ordindary Least Squares

provides the ideal constant coefficient
for each dataset and each basis.

oo ™o

ion Programmmg
5
Y and Y into

s of B.
B © R D, | )
2| =min | ]22 - rw g [=min[|2o| - |70 |30
& . . o G
/7527 ﬂm /"{;) Dy | ﬂgﬁ (P) 7@ +fi([|;|>) T(Di
2

Compact, algebraic closure

Beetham & Capeclatro (2023)
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Context Configuration Methodology

GEP can be used to symbolically determine non-constant coefficients

GEP enabled Sparse regression:

B results in models with comparable accuracy to SR alone,
but with a much higher degree of automation.
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GEP can be used lo symbolically determine non-constant coefficients

GEP enabled Sparse regression:

B results in models with comparable accuracy to SR alone,
but with a much higher degree of automation.

Sparse Regression Sparse Regression + GEP

Term € Number of terms € Number of terms
PS 0.15 3 0.06 3
DP 0.01 2 0.01 2
VD 0.07 4 0.09 2
DE 0.15 4 0.08 2
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GEP can be used lo symbolically determine non-constant coefficients

GEP enabled Sparse regression:

B results in models with comparable accuracy to SR alone,
but with a much higher degree of automation.

Sparse Regression Sparse Regression + GEP

Term € Number of terms € Number of terms
PS 0.15 3 0.06 3
DP 0.01 2 0.01 2
VD 0.07 4 0.09 2
DE 0.15 4 0.08 2

Recall the closure for Drag Production:

Sparse Regression alone:

[§]

<“p>p

Tp

RDP _

(0.22¢ — 0.099~2 4 0.003¢°) T+ (0.65¢ — 0.26p2 4 0.019?) U,

Sparse Regression + GEP:

3 (ep) _ 1/2) 1
(0.258gp+(0.03<,o) +1.9S(2)>H+(1.9¢ 5.8¢ )U,

<“p>,27

Tp

RDP _
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