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INTRODUCTION

» Turbulent particle-laden jet applications:
— Gas-turbine engines, fluidized bed,
flame spray pyrolysis, among others.

= Modeling approaches:

— Eulerian-Eulerian (EE)

— Eulerian-Lagrangian (EL)
= Levels of fidelity:

— Reynolds-Averaged Navier-Stokes (RANS)

— Large eddy simulation (LES)
— Direct numerical simulation (DNS)/ Particle-resolved (PR) DNS

= Objective of this work:
— Conduct high-fidelity LES of turbulent particle-laden jet flows using spectral-
element method (SEM) in an EL framework.

U.s. DEPARTMENT OF _ Argonne National Laboratory is a
U.S. Department of Energy laboratory 3 A
ENERGY ::.5n ot 2y imeise rgonne
NATIONAL LABORATORY




NUMERICAL METHOD

= Spectral element method (SEM) (Patera, 1984; Maday & Patera,
1989) implemented in the Nek5000 code.
— Weak formulation (Continuous-Galerkin)
— N order tensor-product Lagrange polynomials at GLL points.
G = E(N + 1)%, G: grid points, E: elements

— Exponential convergence with N = High accuracy at low cost.
— Very low numerical dissipation and dispersion.

— Low-Mach formulation for compressible flows.

— Characteristics-based time integration - CFL ~ 2.0 2D basis function, N=10

= Lagrangian stochastic parcels approach was used.
— Particle ODEs are solved using RK3-SSP - ppiclF library.
(Zwick, 2019) i
— Spectral interpolation of gas phase solution is done at parcel uy(x) = 2 Ugehie (%)
locations. =0
— Particle properties and source terms are projected on the
Eulerian grid via a Gaussian projection filter.
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FLUID/PARTICLE COUPLING ez=1—eg=zwd,nvc<|xn—xn

Gas phase — Navier-Stokes

Interpolation

Particle dynamics

Formulation from: Ling, Balachandar & Parmar (2016); Capecelatro & Desjardins (2013)
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COMPUTATIONAL SETUP

Mostafa et al. (1989)

Parameter Value

Gas Air
Density 1.178 kg/m?
Mass flow rate 0.0021 kg/s
Jet diameter, D, 25.3cm
Reynolds No. 5712
Bulk velocity, Ug 3.54 m/s
Particles Glass
Density 2500 kg/m?3
Diameter 105 um
Mass loading ratio, L 0.2,1.0
Stokes No. ~11.6

L =my/m,

T U.s. DEPARTMENT OF  Argonne Na
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- Initial particle velocity
VO/UB == 05, 07, 0.9 10D] -
- Injection location

zo/D; = —5.0,—3.7, 2.0

- Realistic particle
distribution based on
experimental profiles

- E = 75k elements
-N=17
-G =258M

Ax,

e 0.0085 - 0.0471

20D,

J

Stabilized outflow ™

(Dong et al., 2014)
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SINGLE-PHASE JET
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PARTICLE-LADEN JET: HYDRODYNAMIC FORCES AND
PARTICLE DISTRIBUTIONS
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- Only drag plays a significant
role, with other forces
(pressure-gradient, added
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having negligible effect on
the mean flow.
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PARTICLE-LADEN JET: MASS LOADING
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- At lower loading ratio (L), particles and
gas phase tend to decelerate more
downstream

Current method can capture the
difference in momentum transfer for
cases with differing mass loading
ratios, with numerical results showing
the same trends as in the experiment.
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PARTICLE-LADEN JET

» Further analysis not shown in this presentation:
— Particle sub-cycling: did not have significant effect on flow statistics.
— Grid sensitivity: Improving grid resolution by doing p-refinement (increasing
N) did not affect results - gas-phase is well resolved.
— Initial particle distribution: Assuming uniformly-distributed particles only
affected the near-field, while far-field mean flow statistics are not very much
affected by initial particle distribution.

Colmenares, J. D., Ameen, M. M., Wu, S., & Patel, S. (2021). Large Eddy Simulation of Turbulent Particle-laden Jets using the
Spectral Element Method. In AIAA Scitech 2021 Forum (p. 0635).
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CONCLUSIONS

= Current EL-SEM approach was used successfully to model turbulent single-
phase and particle-laden jets.

= Varying particle injection location and velocity helped improve flow prediction.
= Collisions affected the flow, other simulation parameters did not.

= Cause for discrepancy between numerical and experimental results is unclear:
— Missing information about the experimental flow:
* Prior to exiting the inlet pipe (e.g. swirl)
» Within the jet
— Missing forces in the model:
 History forces
« Tangential component of collision forces
 Realistic collisions (stiffness and restitution coefficients)

» Future work will include missing physics. More detailed experiments would help.
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