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INTRODUCTION
▪ Turbulent particle-laden jet applications:

– Gas-turbine engines, fluidized bed, 

    flame spray pyrolysis, among others.

▪ Modeling approaches:

– Eulerian-Eulerian (EE)

– Eulerian-Lagrangian (EL)

▪ Levels of fidelity:

– Reynolds-Averaged Navier-Stokes (RANS)

– Large eddy simulation (LES)

– Direct numerical simulation (DNS)/ Particle-resolved (PR) DNS

▪ Objective of this work:

– Conduct high-fidelity LES of turbulent particle-laden jet flows using spectral-

element method (SEM) in an EL framework.
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NUMERICAL METHOD 
▪ Spectral element method (SEM) (Patera, 1984; Maday & Patera, 

1989) implemented in the Nek5000 code.

– Weak formulation (Continuous-Galerkin)

– Nth order tensor-product Lagrange polynomials at GLL points. 

  𝐺 =  𝐸 𝑁 + 1 𝑑, 𝐺: grid points, 𝐸: elements

– Exponential convergence with N → High accuracy at low cost.

– Very low numerical dissipation and dispersion.

– Low-Mach formulation for compressible flows.

– Characteristics-based time integration → CFL ~ 2.0

▪ Lagrangian stochastic parcels approach was used. 

– Particle ODEs are solved using RK3-SSP → ppiclF library. 

(Zwick, 2019)

– Spectral interpolation of gas phase solution is done at parcel 

locations.

– Particle properties and source terms are projected on the 

Eulerian grid via a Gaussian projection filter.
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FLUID/PARTICLE COUPLING
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𝑁𝑝: number of parcels;       𝑁𝑑: number of droplets per parcel;      𝜃𝑔: Void fraction

Gas phase – Navier-Stokes
Particle dynamics

Formulation from: Ling, Balachandar & Parmar (2016); Capecelatro & Desjardins (2013)

Interpolation

Projection
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COMPUTATIONAL SETUP
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Parameter Value

Gas Air

Density 1.178 kg/m3

Mass flow rate 0.0021 kg/s

Jet diameter, 𝐷𝐽 25.3 cm

Reynolds No. 5712

Bulk velocity, 𝑈𝐵 3.54 m/s

Particles Glass

Density 2500 kg/m3

Diameter 105 𝜇m

Mass loading ratio, L 0.2, 1.0

Stokes No. ~11.6

Stabilized outflow

(Dong et al., 2014)

Mostafa et al. (1989)
- Initial particle velocity

Τ𝑉0 𝑈𝐵 = 0.5, 0.7, 0.9 

- Injection location

𝑧0/𝐷𝐽 = −5.0, −3.7, −2.0

- Realistic particle 

distribution based on 

experimental profiles

- 𝐸 = 75𝑘 elements

- 𝑁 = 7
- 𝐺 = 25.8 𝑀

-
Δ𝑥𝑐

𝐷𝑗
= 0.0085 − 0.0471

inlet

𝐿 = ሶ𝑚𝑝/ ሶ𝑚𝑔



SINGLE-PHASE JET
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PARTICLE-LADEN JET: P-P COLLISIONS
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𝑳 = 𝟏. 𝟎; ҧ𝜃𝑝 = 0.00047; 𝑆𝑡 = 11.6

→ Classification by Elghobashi 

(1991): limit between 

dense/dilute suspension. 

Collisions may be neglected.

→ Current results: 4-way 

coupling improved particle 

distribution and centerline 

velocities.

Case # Injection 

loc., 𝒛𝟎/𝑫𝑱

Coupling

C-1 -5 2-way

C-2 -5 4-way

C-3 -2 2-way

C-4 -2 4-way

Gas

Particle



PARTICLE-LADEN JET: INJECTION PARAMS.
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𝐿 = 1.0; ҧ𝜃𝑝 = 0.00047; 𝑆𝑡 = 11.6

𝑧0 ↓ : Further upstream

→ By changing particle 

injection location and 

velocity, predicted exit 

velocity can be improved.

Case # Injection 

loc., 𝒛𝟎/𝑫𝑱

Injection 

vel. 𝑽𝟎/𝑼𝑩

C-2 -5 0.7

C-4 -2 0.7

C-5 -3.7 0.7

C-6 -5 0.5

Gas Particle



PARTICLE-LADEN JET: HYDRODYNAMIC FORCES AND 
PARTICLE DISTRIBUTIONS
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𝐿 = 1.0; ҧ𝜃𝑝 = 0.00047; 𝑆𝑡 = 11.6

→ Only drag plays a significant 

role, with other forces 

(pressure-gradient, added 

mass, shear-induced lift) 

having negligible effect on 

the mean flow.

Case # Forces Distributio

n

C-7 Drag Non-

uniform

C-9 All HD Non-uniform

C-10 Drag Uniform

Gas Particle



PARTICLE-LADEN JET: MASS LOADING
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𝐿 = 0.2 − 1; ҧ𝜃𝑝 = 9.5 × 10−5; 𝑆𝑡 = 11.6

→ At lower loading ratio (L), particles and 

gas phase tend to decelerate more 

downstream

→ Current method can capture the 

difference in momentum transfer for 

cases with differing mass loading 

ratios, with numerical results showing 

the same trends as in the experiment.



PARTICLE-LADEN JET
▪ Further analysis not shown in this presentation:

– Particle sub-cycling: did not have significant effect on flow statistics. 

– Grid sensitivity: Improving grid resolution by doing p-refinement (increasing 

𝑁) did not affect results → gas-phase is well resolved.

– Initial particle distribution: Assuming uniformly-distributed particles only 

affected the near-field, while far-field mean flow statistics are not very much 

affected by initial particle distribution.

12

Colmenares, J. D., Ameen, M. M., Wu, S., & Patel, S. (2021). Large Eddy Simulation of Turbulent Particle-laden Jets using the 

Spectral Element Method. In AIAA Scitech 2021 Forum (p. 0635).



CONCLUSIONS
▪ Current EL-SEM approach was used successfully to model turbulent single-

phase and particle-laden jets.

▪ Varying particle injection location and velocity helped improve flow prediction.

▪ Collisions affected the flow, other simulation parameters did not.

▪ Cause for discrepancy between numerical and experimental results is unclear:

– Missing information about the experimental flow:

• Prior to exiting the inlet pipe (e.g. swirl)

• Within the jet

– Missing forces in the model:

• History forces

• Tangential component of collision forces

• Realistic collisions (stiffness and restitution coefficients)

▪ Future work will include missing physics. More detailed experiments would help.
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