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Introduction

Renewable electricity
generation pathways
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Biomass is currently the only
resource for carbon-based

R fuels and chemicals
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Conversion pathways

High temperature Thermochemical conversion
> ¢ Pyrolysis
* Gasification

v
products
e Syngas
Lignocellulosic * methane
Biomass * Bio-oil
Eg: Corn stover, * ethanol
agricultural * diesel
waste 4

Low temperature Biochemical conversion
> ¢« Enzymatic hydrolysis
* Microbial bioreaction
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Unit operations

https://www.energy.gov/eere/bioenergy/sustainable-
aviation-fuel-grand-challenge

Feedstock storage
and handling

Pretreatment and
conditioning

Enzymatic
hydrolysis

Catalytic
upgrading

-

Bioreaction
(fermentation)

S —

Make cellulose
more accessible

Digest cellulose
to sugars

* Convert sugars

to products
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Background

* Bioreactor: microbial action for conversion
Food/beverage/Pharma industry
Biofuels/molecules
* Ethanol/Butane-diol/Methane
e Sustainable Aviation Fuels (SAF)
CO, capture and conversion
* Syngas fermentation
* Fermentation is a large cost contribution
* Improved bioreactor design
* More engineering than biology Flat panel bioreactor*
 Dominant physics: Gas-liquid flow
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Syngas fermentation** (Lanzatech) Biomethanation reactor (NREL)

**https://www.youtube.com/watch?v=k3WLwKrEu7c *Singh and Sharma, Renew. Sust. Reviews, 2012 NREL | 5



Challenging multiphase flow questions
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Pollia et al., Chemical Engineering Science 57 (2002) 197-205.

How do gas mixtures Impact (e.g.
Bubble dynamics CO/CO,/H,/air) bubble size distributions
and mass transfer?

How does component-wise microbial
Microbial kinetics uptake influence species distribution and
hydrodynamics?

How do we design large-scale reactors (™
Novel reactor design 500 m3) with improved mixing and
energy requirements?
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Mathematical model and numerical methods
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Multiphase Euler-Euler equations

e @Gas and liquid as continuous interpenetrating phases Q}OC)

* Compressible low Mach RANS equations

ap, +ag =1 Volume fraction constraint
9, v .
g (CVz,Oz) + V (CVi,Uz’Vz’) — ass conservation
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Momentum conservation
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Species transport within
each phase
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Bubble size distribution* modeling
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*Lehnigk et al., AIChE Journal, 68,3, 2022 NREL | 9



Drag and mass transfer model

3
Fp = Z(Cp/d)ozplUf x sign(U,) Drag force

Cp = f(Re, Eo,ay) Grace drag model

Species mass transfer (Higbie et al. )

MTR = kLa(C;.‘ _ Cj) species transfer rate
X, P
O = 2000 PL Henry’s law
/ H; My
. O«
k‘L _ 4D |usllp| a = _G m’é‘ 40 |
™ dp dy, £ 3¢ =
S 30 |
9 25 1
Microbial uptake (Monod model) o 20[ .
S 15 1
CO 2 10r .
OUR = OUR 2 5 s |
maXKO —|‘COQ L g o ' | | |

0 0.02 0.04 0.06 0.08
Oxygen concentration (Mol/m3)

1 Higbie, R., 1935. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. AIChE 31, 365-389.
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Numerical methods and solver

* Transport properties
* Fermentation broth properties are similar to water
* Multiphase k-w SST turbulence model
e Population balance over 1-5 mm bubbles with 10 classes

* multiphaseEulerFoam in OpenFOAM
* In-house implementation for
* Higbie mass transfer model
e Grace drag model

e Typically simulations performed using
e 128 Intel Skylake processors
e 48 hours of run time to simulate 30 seconds for 0.5 million cells

e More details in

* Rahimi et al., Chem. Engg. Res. Design, 139, 2018
e Sitaraman et al., Chem. Engg. Res. Design, 197, 2023
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Model validation with small-scale bubble column
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*McClure et al., Chem. Eng. Technol. 36 (12), 2065-2070.
**Comparison with Hissanaga et al., Chem. Engg. Sci, 2020 and Ngu et al., Chem. Engg. Sci., 2022 NREL | 12



Bioreactors at scale

* Bottom boundary — air sparger
e Draft tube and impellers aid better mixing
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Two case studies

e 2,3 Butanediol production from sugars

e CO,/syngas conversion to fuels
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Butanediol (BDO) synthesis from sugars

e BDO is a SAF intermediate

* Process scale-up for meeting SAF goals

* Needs controlled amount of oxygen
e High O2 -> side products

* Coupling with microbial bioreactions

and hydrodynamics
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Butanediol (BDO) synthesis from sugars

Multiphase
‘ transport solve I
Update Steady-state
OXxygen species
uptake rate distribution
0;(mol/m?)
0.705
‘ Bioreaction \ [oooo
, (mol/m
update ~ 2 _ o500 °[‘02’68 ’ Oumotm?)
hours - 0.400 o v
- 0.250 - 0.235
. . I:OWJ et 0.230
Time step subcycling scheme 0214 . 0228
800 BDOI —
 Flow-reaction coupling Acetoin

» Disparate time scales: reactions ~ hours,

fluid-dynamics ~ 100 sec =l
« Time step subcycling E 400
* Lower aeration rates and shorter bubble 200 |
columns favor higher BDO production
 Taller columns (case 1) leads to higher 0

35 x 5m 35 x 5m 35 x 5m 15 x 7.6m 7 x 10m
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Two case studies

e 2,3 Butanediol production from sugars

e CO,/syngas conversion to fuels
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Bubble column simulations
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Bubble column Sparger

* Bottom inlet with a gas fraction that specifies sparger mass flow rate
e Lateral walls use no-slip condition for liquid and slip for gas

* Vary gas mixture mass fractions (H,:CO,:CO) while keeping constant mass
flow rate of 0.45 g/s.
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Bubble size distribution variations

Case 1 (less H,)

average Sauter diameter

Case 2 (more H,)

Sauter
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Effect of bubble column height

Large scale (10 m) H, conc. (mol/m3)
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Conclusions and future work

* Conclusions
 Computational model
* OpenFOAM based multiphase solver with microbial uptake
e Results
e Validated small scale bubble column
* Comparison between bubble column, airlift and stir-tank reactors
e Better mixing in stir tanks
* Greater pressure heads leads to greater O, transfer
e Butanediol reactors
e Multiphase coupling to microbial bioreactions
* Lower aspect ratio reactors are favorable at scale
* (CO2/syngas reactors
* H2 has a strong impact on multiphase dynamics

* Future work
* Higher fidelity LES
* Bubble size distribution models for mixtures
* Novel reactor designs: e.g. looping reactors
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