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An Overview

 ExaAM - applications

» Software stack

— Cabana/Kokkos
— Picasso

 PicassoMPM

— Coupled thermomechanics problems + phase change
— Examples

— Performance

« Summary and future work
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PicassoMPM for additive manufacturing

« Simulation of laser powder bed fusion (LPBF) on
Frontier with

— Thermal (enthalpy formulation), mechanical, and
coupled terms

— Keyhole formation
— Vapor effects (no explicit vaporization tracking)
— Fully resolved powder bed
« Size and shape dispersion, dropped and/or raked
— Laser ray tracing

« Coupling to other parts of the ExaAM workflow

. . : . . P. Bidare et al., Acta Materialia, vol 142,
— Higher fidelity microstructures near defects or in op. 107-120, Jan. 2018,

keyholing (CA or PF)

— Develop models to improve keyhole predictions in
additiveFOAM —
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PicassoMPM in ExaAM

Iterate using locally accurate constitutive properties

/Phase field simulation of solid}
solid phase transformations,

PicassoMPM: high-fidelity MPM Jeigetle il esi st

simulation of melt pool heat | :
transport, fluid dynamics, surface
deformation, and explicit powder

ExaCA: cellular automata\ /ExaConstit: crystal plasticity\
simulation of as-solidified simulation of mechanical
grain structure properties

/Diablo: finite element simulati% (OpenFOAM: finite volume
of macroscale thermo-mechanics simulation of melt pool heat

transport, fluid dynamics
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Software Stack

(" ExaMPM
MPM proxy

J

Cabana ArborX

* Flexible particle data layout Geometric
Performance portable, multi-node particle and particle-grid motifs search

\_

PicassoMPM
“CabanaMPM” MPM app

(" )

hypre
Structured
solvers

MPI
Multi-node computation )

Kokkos
On-node performance portability
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Cabana
Particle library

Slattery et al., (2022). Cabana: A Performance Portable Library for Particle-Based Simulations.
Journal of Open Source Software, 7(72), 4115, https.//doi.org/10.21105/joss.04115
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https://doi.org/10.21105/joss.04115

oPA application partners

EXAALT
LAMMPS MD,
LATTE QMD
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Cabana functionality (MPM relevant)

« Core library  Cajita (structured grids)
— Particle/neighbor parallelism — Grid parallelism
— Neighbor lists — Grid halo
— Linked cell lists — Particle-grid interpolation
— Binning/sorting — FFTs
— Particle migration — Structured solvers
— Particle halo — Grid load balancing
— Particle I/0 — Sparse grids*

* Proxy apps (MD, PIC, MPM, N-body)

Py
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Picasso
PIC Library

<+
PicassoMPM

Additive manufacturing application
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M P M Lagrangian step Convective step
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* Field management = .//\ fi
« Batched linear algebra \
* PolyPIC
« APIC
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PicassoMPM development

* Coupled Thermal+Momentum+Surface
single-velocity explicit flow solver

 Latent enthalpy phase change
« Surface physics (ArborX)

— Tree construction/traversal

 How do these components use Cabana?

— Particle and grid data structures and parallel
iteration

— Particle-to-grid and grid-to-particle interpolation
— Grid halo communication/exchange
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Model equation system

Energy: Discretized weak form:

DH
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Surface tension physics

Surface tension potential enerqy:

V= | k°|JFTh|ds
oS

Tensor gradient form:

Picasso::P2G::divergence(spline, st_p, du_surface i)

Node force due to surface tension
energy quadrature:

o - (9]\72-(:1: )
id = — E —(F JdA P
f d p aFdj( (xp) p) 8%

Chen et al. A Momentum-Conserving Implicit Material Point Method for
Surface Tension with Contact Angles and Spatial Gradients. ACM TOG.
2021
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PicassoMPM (thermomechanics + surface tension)

. Memory/ . o .
Communication flop kernel 1. Picasso::p2g::value( m_p, v_p, h_p, h_i, m_i, dt, spline );
Picasso::p2g::value( m_p, v_p, u_p, u_i, m_i, dt, spline );
1. Particle to grid x2 2. PicassoMPM::Constitutive::MaterialModel<TProps>::updateTemperature(...)
Picasso::G2P::gradient( spline, t_i, grad_t_p );
2. Get grid temperature from Picasso::G2P::gradient( spline, v_i, grad_v_p );
enthalpy constitutive relation Picasso::G2P::gradient( spline, x_i, F_p );

3. PicassoMPM::StressModel<StressFunc>::computeStress (...)
PicassoMPM::SurfaceTensionModel<SurfaceTensionFunc>::getSurfaceTension(...)
Picasso::P2G::divergence( spline, grad_t_p, dh_i );

Picasso::P2G::divergence( spline, s_p, du_i );
Picasso::P2G::divergence( spline, st_p, du_surface_i );

3. Compute grid enthalpy
change/internal force
contributions from stress and
surface tension

4. Grid update x2 4. h_i(i, j, k) +=dt*dh_i(i,j, k )/ m_i(i,j, k);
u_i(i,j, k) +=dt * (du_i(i, j, k ) + du_surface_i(i, j, k ) + du_gravity_i(l, j, k ) + du_recoil_i(1,j,k)) / m_i(i, j, k );

5. Add boundary conditions 5. PicassoMPM::BoundaryCondition<BCFunc>::apply(...);
PicassoMPM::BoundaryCondition<BCFunc>::applyParticle(...);

6. Grid to particle x2 6. Picasso::g2p::value( h_i, h_p, spline );
Picasso::g2p::value( u_i, u_p, spline );

Each kernel is called by Cabana::simd_parallel_for (particles) or Cajita::grid_parallel_for (grid) (Cajita::Halo as needed)
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Surface particle generation

Level set calculation: Eikonal equation:
op(x,t
Signed distance function:  |Vo¢(z)| = 1 % +[[Vé(z, )| =0
Zero level set isocontour: Marching cubes triangle mesh: Surface particle generation:
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Example problems

* Oscillating cube
 Dam break
e Spot melts
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Melting cube
dam break
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Liquid metal solidifying on a chilled surface
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Spot melts
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Laser tracking
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Performance / Exascale
readiness




Performance comparison
hardware

« SuMmmit node
— 6 NVIDIA V100 GPU
— 42 IBM POWERS9 CPU cores

» Crusher pre-Frontier testbed
— 8 AMD MI250X GPU (GCD) %0AK R ‘
— 64 AMD EPYC CPU cores deie | T TCYINTTER

hitps://www.ornl.gov/news/ornl-
launches-summit-supercomputer

https://www.ornl.gov/news/us-department-energy-and-cray-deliver-
record-setting-frontier-supercomputer-ornl
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Crusher performance: kernel view

I Thermal

103‘§ Mechanics i Run case.

Surface

| Spot melt with
- 9M grid points,
| 250M particles
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Crusher results — size scaling for representative kernels
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Crusher scaling with 1 & 10 nodes (APIC)

Perfect > .
. strong
scaling

30 40 80

# Crusher GPUs

1M grid & ~31M particles
10M grid & ~330M particles

Using 1 & 10 Crusher nodes
Time for 200 steps (not time to
solution)

Thermal-only spot melt

75% weak scaling eff.
62% strong scaling eff.
Plan to run much larger
particle counts (especially
with powder)

Perfect
weak
scaling

—_—

()

) EXASCALE
COMPUTING
PROJECT




Summary/On-going work

* PicassoMPM is a performance portable high fidelity multi-physics
MPM application for additive manufacturing, built on the Cabana,
Picasso, and ArborX libraries.

* In-progress comparisons with UTK MURI experimental and
OpenFOAM simulation results for direct numerical simulations of
LPBF

« Additional physics capabilities and on-going performance
optimizations
— Implicit solvers
— Sparse grid
— Ray tracing

PPPPPPP
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Co-design center for Particle Applications (CoPA)
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ExaAM Collaborators

 MPM modeling:
— Joey Teran (UC Davis), Steven Gagniere (UCLA), David Hyde (Vanderbilt)
— Chenfanfu Jiang, Yuxing Qui, Yu Fang (UCLA)
— Duan Zhang (LANL)

* Experimental comparison, understanding, and validation
— Hahn Choo, Rakesh Kamath, Ryan Heldt (UTK), Naren Raghavan (LANL)

* Solidification modeling:
— John Coleman, Gerry Knapp, Alex Plotkowski (ORNL)
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