

Consortium for Computational Physics and Chemistry

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

CFP Regenerator Model Development

NETL Multiphase Workshop

Bruce Adkins Yupeng Xu, Mehrdad Shahnam and Jordan Musser August 13-14, 2024

Oak Ridge National Laboratory National Energy Technology Laboratory

Catalytic Fast Pyrolysis (CFP)

NREL's "2FBR": A Flexible CFP Unit

ZSM-5 Based Catalysts Used in 2FBR Bubbling-Bed Upgrader

80% ZSM-5 20% Alumina

+/- P-promotion (2.5 wt%)

Geldart B Dp = 500 – 800 μm

Spent Catalyst: 9-13 wt% CoC (Coke on Catalyst)

Coke Characterization and Combustion Behavior

NATIONAL ENERGY TECHNOLOGY LABORATORY

Quality of Fit: Four TPO Runs

CCPC | Consortium for Computational Physics and Chemistry

NATIONAL ENERGY TECHNOLOGY LABORATORY

Reaction	Rate Equation	Units
Low temperature CO_2	$-Ea_{CO2_low}$	
formation on surface	$R_{CO2_low} = a_{CO2_low} cC_{low} cO_2^{-cO2_low} e RT$	
High temperature CO ₂	$-Ea_{CO2}hi$	
formation on surface	$R_{CO2_hi} = a_{CO2_hi} cC_{hi} cO_2^{cO2_hi} e^{-RT}$	mal//m ²
Low temperature CO	$-Ea_{CO_low}$	mor/(ms
formation on surface	$R_{CO_low} = a_{CO_low} c C_{low} c O_2^{CO_low} e^{-RT}$	
High temperature CO	hco.hi -Ea _{CO_hi}	
formation on surface	$R_{CO_hi} = a_{CO_hi} cC_{hi} cO_2^{cC_hi} e^{-RT}$	
CO avidatian	$-Ea_{CO_{-}CO_{2}}$	
CU oxidation	$R_{CO_{CO2}} = a_{CO_{CO2}} \rho_p \ cCO \ cO_2^{CO_{2}CO_{2}} \ e^{-RT}$	moi/(m°.s

Unpromoted Catalyst Coke Combustion Kinetic Model

1.	Pool the CO and CO2 outflow data from TPO runs and fit model
	parameters using a "0D" (gradientless) spreadsheet model and SOLVER

2. Use 2D full-gradient COMSOL FEM model to adjust the CO oxidation constant to account for mass and heat transfer effects in catalyst particles and in bed

Parameter	Units	Value
a _{CO_CO2}	m³/(kg.s)	0.2925
a _{CO2_low}		1,087
a _{CO2_hi}	1/c	5,102
a _{CO_low}	1/5	33,881
a _{CO_hi}		594,715
<i>b</i> _{CO_CO2}		0.0695
b _{CO2_low}	- J/mol	0.5384
b _{CO2_hi}		0.4793
b _{CO_low}		0.6650
b _{CO_hi}		0.9739
Ea _{CO_CO2}		14,680
Ea _{CO2_low}		88,103
Ea _{CO2_hi}		118,987
Ea _{CO_low}		109,677
Ea _{CO_hi}		143,340

Translate Model to Barracuda: 80 μm BFCC Particles with 1 wt% CoC

- 1. Assume the coke profile inside the 80 μ m particle is uniform \rightarrow AVOID MODELING THE PARTICLE INTERIORS
 - The 80% ZSM-5, 20% Al2O3 formulation is too high in Z/M (too many active sites and too low in mesoporosity: Thiele number is too high). This very likely leads to the core-shell coke profile. THE REAL BFCC CATALYST SHOULD HAVE LOWER Z/M!!!
- 2. Convert reaction expressions to volume concentrations (mass/volume) instead of surface concentrations (mass/area)
 - Used the "single particle in one grid cell" method to validate the conversions

Parameter	Units	COMSOL	Barracuda	
a _{CO_CO2}	m³/(kg.s)	0.2925	0.6107	
a _{CO2_low}		1,087	90,689	
a _{CO2_hi}	1/0	5,102	425,663	
a _{CO_low}	1/5	33,881	2.827E+06	
a _{CO_hi}		594,715	4.962E+07	
b _{CO_CO2}		0.06	695	
b _{CO2_low}		0.53	384	
b _{CO2_hi}	-	0.47	793	
b _{CO_low}		0.66	0.6650	
b _{CO_hi}		0.97	739	
Ea _{CO_CO2}		14,6	680	
Ea _{CO2_low}		88,2	103	
Ea _{CO2_hi}	J/mol	118,987		
Ea _{CO_low}		109,	677	
Ea _{CO_hi}		143,	340	

BFCC Regenerator: 5 mTPD Demo Unit

	Fixed Parameter	Units	Value
	Biomass Feedrate	mT/day	5.0
	Catalyst Circ Rate	(dry basis)	45.0
	Catalyst/Biomass	-	9.0
	Coke Yield	wt%	9.0
DC	CAT Coke on Catalyst (CoC)		1.00
	DCAT CoC "Low" Form	wt%	0.61
	DCAT CoC "High" Form		0.39
	Base Catalyst Inventory	kg	325
	Stoichiometric Airflow	kg/s	0.06
	Nominal Pressure	kPa	274
	Catalyst Particle Density	kg/m ³	1,380
	90% 90% 80% 70% 60% 50% 40% 20% 20 Particle Diameter, um	200	
nd Chemistry	9	N	NATIONAL ENERGY TECHNOLOGY LABORATORY

OAK RIDGE

National Laboratory

CCPC |

Variables Studied

Variables		Range
Relative Airflow (Stoichiometric = 1)		1.0, 1.1, 1.3
Relative Catalyst Inventory (Base = 1)	-	1.0, 1.3, 1.6
DCAT Temperature Effect of Riser Outlet Temp (ROT) and/or catalyst cooler	°C	450, 500, 530, 544

Important Outputs

Variables	Units	Significance
	w/t%	Sets the <i>activity</i> of the catalyst
	VVL/O	returning to the riser
		An indication of the potential for
Flue Gas CO	v%	afterburn (CO combustion in
		freeboard)

ECAT Carbon on Catalyst (CoC)

CCPC | Consortium for Computational Physics and Chemistry

11

Flue Gas Composition

CCPC | Consortium for Computational Physics and Chemistry

12

Catalyst Flow Segregation

The Blended Acceleration Model

P. J. O'Rourke and D. M. Snider. A new blended acceleration model for the particle contact forces induced by an interstitial fluid in dense particle/fluid flows. Powder Technology, 256(): 39–51, 2014

Weighting parameter for blending the MP-PIC and average particle accelerations:

Effect of Blended Acceleration (n = 6)

No Blended Acceleration

Blended Acceleration (n = 6)

CCPC | Consortium for Computational Physics and Chemistry

14

Effect of Phosphation

Parameter	Units	Value
a _{CO CO2}	m³/(kg.s)	0.1852
	1/s - J/mol	40.851
a _{co}		171.58
$b_{CO,CO2}$		0.06993
b_{CO2}		0.6776
b _{co}		1.0
Ea _{co co2}		20,729
Ea _{CO2}		76,029
Ea _{co}		83,117

CCPC | Consortium for Computational Physics and Chemistry

16

RIDGE

Conclusions

Unphosphated catalyst

- Initial results indicate that excessively high temperatures (≥ 780°C) could be needed to reduce ECAT CoC below 0.1 wt%.
 - Tradeoff: ECAT activity vs long-term hydrothermal deactivation of zeolite (also activity)
 - Full analysis should include the complete heat balance
- At demo scale (5 mTPD) risk of afterburn is low
 - Need to consider commercial scale

Phosphated catalyst

- Combustion behavior is different! Higher CO/CO2 ratio, lower regenerator temperatures, higher ECAT CoC → Needs higher DCAT temperature
- More TPO data needed at other O2 levels

Segregating Flow

- Segregating flow is very important to regenerator performance
- Data needed!

Acknowledgements

Huamin Wang (PNNL) Xinbin Yu (PNNL) Kinga Unocic (ORNL) Susan Hadas (NREL) Cody Wrasman (NREL) Mike Griffin (NREL) Theodore Kraus (ANL) Jacklyn Hall (ANL) Fulya Dogan Key (ANL)

This work was funded by the US Department of Energy (DOE) Bioenergy Technology Office (BETO)

