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• Started with an aminated PIM sorbent PF-15-TAEA developed by the NETL Integrated 

Project team

• PIM sorbent available in various form factors (particle and/or fiber)

• Intrinsic kinetics identified from mg-scale samples are not applicable at reactor scale

• Develop a laboratory-scale experiment in MFAL to investigate 

sorbent performance in a fixed bed configuration with active 

flow

• Calibrate sorbent kinetics using a 

CFD model of a small fixed bed reactor

Project Overview

Laboratory-scale 

experiments and 

CFD models NETL 

sorbents

Validate CFD 

modeling approach 

and model 

parameters

Use CFD models to scale 

up DAC based on NETL 

sorbents

Small pilot scale:

include ducting, fan, 

regeneration

Optimize performance
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Concept Design 3D Printed

Small-Scale Fixed Bed Testing
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• A CFD model is developed for the small-scale fixed bed using the porous media model 

approach in Ansys Fluent

• A porosity of 0.56 (𝜀𝑠 = 0.44) is specified for the fixed bed

• Both the equilibrium adsorption 𝑛∗ = 𝑓 𝑃, 𝑇  and the dynamic/instantaneous adsorption 

𝑛 are stored in user-defined memory and explicitly updated every time step

• Mass source term accounts for depletion rate of gas-phase CO2 due to adsorption

𝑆𝑚 = − 𝜀𝑠𝜌𝑠 𝑀𝑊CO2 Τ𝑑𝑛 𝑑𝑡

• Energy source term depends on the mass source and accounts for heat of adsorption

𝑆ℎ = −
Δ𝐻 𝑆𝑚
𝑀𝑊𝐶𝑂2

;  Δ𝐻 ≡ Heat of adsorption

Porous Media Model Solution Approach
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• For homogeneous/isotropic porous media,

• Coeff. of viscous resistance = 5.11 ∙ 108 [1/m²]

• Coeff. of inertial resistance = 1.25 ∙ 104 [1/m]

Porous Media Method Pressure Drop Calibration

P
re

s
s
u
re

 (
P

a
)

2.7 slpm

ΔP = 652.38 Pa

3.0 slpm

ΔP = 745.12 Pa

5.0 slpm

ΔP = 1470.42 Pa

Flow rate
(slpm)

Experimental ΔP 
(Pa)

2.5 602.35

2.7 661.85

5 1558.69

10 4091.90

Inertial termViscous term

𝑆𝑖 = −
𝜇

𝛼
𝑣𝑖 +

1

2
𝐶2𝜌 𝑣 𝑣𝑖



8

• Langmuir-Freundlich isotherm parameters 𝑞𝑚𝑎𝑥, 𝐾𝑒𝑞, and 𝑛 can be determined from 

isotherm data at different temperatures

• By considering these as exponential functions of temperature, a single-equation fit is 

generated that can be implemented into the CFD code

Isotherm Fit for Adsorption of CO2 from Dry Air

𝑞𝑚𝑎𝑥 = 𝑘1 exp Τ𝑘2 𝑇  

𝐾𝑒𝑞 = 𝑘5 exp Τ𝑘6 𝑇  

𝑛 = 𝑘3 exp Τ𝑘4 𝑇  

𝑘1 = 3.053 ∙ 10−4 mol-CO2/g-sorbent

𝑘2 = 708.7 K

𝑘3 = 1.570 ∙ 10−2 (mol-CO2/m³-gas)n

𝑘4 = 1332.1 K

𝑘5 = 13.02 

𝑘6 = −1137.8 K

𝑞𝑒 =
𝑞𝑚𝑎𝑥𝐾𝑒𝑞𝐶co2

𝑛

1 + 𝐾𝑒𝑞𝐶co2
𝑛
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• Adsorption of CO2 from dry air is modeled using the second-order linear driving 

force model with 𝑞𝑒 implemented based on the isotherm

          

• CFD simulations were performed with different values of 𝑘 at 500 ppm CO2 

and T = 22℃ to match the experimental condition

• The effect of 𝑘 on the breakthrough time underlines the methodology for 

calibrating 𝑘 against the experimental data; 𝑘 = 0.00861 (g-sorbent/

g-CO2)/s produces the best match for the range of flow rates studied

Dry Adsorption Rate Calibration

2.7 slpm @ 500 ppm CO2

𝑘 = 0.00861 ΤΤg−sorbent g−CO2 s
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• Equilibrium CO2 capacity increases as a result of humidity in air but H2O adsorption is 

generally unaffected by the presence of CO2

• Stampi-Bombibelli et al.1 used the first-order linear driving force model to investigate 
co-adsorption of CO2/ H2O

𝑑𝑞𝑡,CO2
𝑑𝑡

= 𝑘CO2 𝑞𝑒,CO2 − 𝑞𝑡,CO2  ;  
𝑑𝑞𝑡,H2O

𝑑𝑡
 =  𝑘H2O 𝑞𝑒,H2O − 𝑞𝑡,H2O

• Appropriate isotherm models must be used for 𝑞𝑒,CO2 and 𝑞𝑒,H2O in co-adsorption 
conditions

• Most of the heat released during co-adsorption of CO2/H2O is due to H2O adsorption; 

since H2O is present in higher concentrations compared to the ppm levels of CO2, 

accurate representation of the isosteric heat of adsorption becomes important

Effect of Humidity on CO2 Adsorption

1 V. Stampi-Bombibelli, M. vab der Spek, M. Mazotti, Analysis of direct capture of CO2 from ambient air via steam-assisted temperature vacuum swing adsorption, Adsorption, 2020, 26, 1183–1197.
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• The small-scale fixed bed setup was modified to incorporate a bubbler for experimental 

breakthrough testing with humid air

Modified Setup for Humid Adsorption
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• 22°C
• 40–45% RH
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• Breakthrough testing is conducted with dry and humid air at different flow rates

• Repeats runs at the same flow rate show comparable breakthrough profiles

• The breakthrough curve rises faster with increased flow rate since more CO2 is available relative to the 
capacity

• The breakthrough curve rises slower with humid air indicating larger capacity

• MFAL breakthrough profiles are used to calibrate 𝑘CO2 in the fixed bed configuration only, 
not to measure uptake capacity; 𝑞𝑒,CO2 in co-adsorption CFD model is affixed based on 
data from NETL Integrated Project colleagues

Humid Adsorption Breakthrough Results
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• Experimental data provided by Integrated 

Project colleagues is used to fit a Henry’s 
Law relationship between 𝑞𝑒,H2O and 

relative humidity (RH)

• Rate constant 𝑘H2O is assumed constant 

since RH is being varied at constant 

temperature

• The data fit corresponds to a Henry’s Law 

constant of 0.1736 wt.%/RH

• This allows H2O uptake capacity to be 

incorporated into the CFD model as a 

continuous function of humidity

Effect of Humidity on H2O Uptake Capacity
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• CFD model for dry adsorption was extended to model the co-adsorption of CO2/H2O

• CFD simulations were performed at different values of 𝑘 at inlet flow rate of 2.8 slpm 

with 500 ppm CO2 and 40% RH at T=25℃
𝑑𝑞𝑡,CO2
𝑑𝑡

=  𝑘CO2 𝑞𝑒,CO2 − 𝑞𝑡,CO2  ;  
𝑑𝑞𝑡,H2O

𝑑𝑡
 =  𝑘H2O 𝑞𝑒,H2O − 𝑞𝑡,H2O

𝑞𝑒,CO2 = 1.31 Τmmol−CO2 g−sorbent at 25℃ from Micromeritics BTA

𝑞𝑒,H2O = 0.1736 ∙ RH % , 𝑘H2O = 0.001366 s−1

Modeling CO2 Adsorption from Humid Air

Calibrated 𝑘CO2 = 2.08 ∙ 10−4 s−1
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• Rate constant values cannot be compared directly for sorbents with different uptake capacities; 

for side-by-side comparison of the kinetics for CO2 adsorption from dry and humid air, the 
net uptake rate of CO2 is considered

• CO2 adsorption from humid air starts 

out 1% faster and the difference 

grows over time (+1% after 200 s)

• Current iteration of PF-15-TAEA has up to 25% increased capacity and will require a repeat 
of the sorbent characterization methodology

Modeling CO2 Adsorption from Humid Air

CO2 loading
(g-CO2/g-sorbent)

H2O loading
(g-H2O/g-sorbent)

CO2 adsorption (dry) CO2 adsorption (humid) H2O adsorption 
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Ongoing/Future Work: Scale-up to Bench Scale
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CO2 Bed Inlet
0-2000ppm
0-100%

CO2 Bed Outlet
0-2000ppm
0-100%
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High Speed 
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• Adsorption experiments in the bench-scale setup was conducted at MFAL by 

Integrated Project colleagues

• The CFD model of the small-scale fixed bed will be scaled up and validated against 

experimental bench-scale data

• In turn, the validated CFD model will be used to optimize bed design and operating 

conditions for best capture/pressure drop performance

• The rate calibration regimen may need to be repeated if significant changes to 

sorbent form factor or operating conditions occur

Ongoing/Future Work: Scale-up to Bench Scale
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• PF-15-TAEA is currently available in different form factors, 

solid fibers, hollow fibers, and flat sheet with different 

uptake and kinetics properties

• Porous media model approach may not be appropriate 

to model the flow through the flat sheet arrangement 

because of non-uniform distribution of porosity

• To accurately predict pressure drop across the flat sheet, 

a CFD–DEM coupled simulation is developed in Ansys 

Rocky coupled with Ansys Fluent

• The flexible fibers are modeled by connecting multiple 

sphero-cylinders serially through virtual bonds1

Ongoing/Future Work: Modeling of Fiber Shaped Sorbents

1 Y. Guo, C. Wassgren, J. S. Curtis, D. Xu, A bonded sphero-cylinder model for the discrete element simulation of elasto-plastic fibers, Chemical Engineering Science, 2018, 175, 118–129.
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• The curved/deformed shape is generated because 

of the relative movement between sphero-cylinder 

elements 

• The bond forces can be calculated using different 

models, e.g. linear elastic, bilinear elastoplastic, 

model, linear elastic & viscous damping, etc.

• Further sensitivity studies are necessary to develop 

an accurate representation of the flat sheet form 

factor in the coupled CFD-DEM model

Ongoing/Future Work: Modeling of Fiber Shaped Sorbents

Schematic representation of a fiber composed multiple elements

  𝑒𝑛 
1

  𝑒𝑛 
2𝑑1 𝑑2

Schematic representation of a fiber in deformed state

Deposition of multi-element flexible fibers on obtained from simulation 
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• The CFD-DEM model is used to analyze pressure drop across a representative fiber mat

• Fibers are deposited on a horizontal plane halfway up the 11.4 x 11.4 x 4.06 cm domain

• Inlet air velocity = 2 m/s

• Fiber diameter = 0.7 mm

• Fiber length = 24.05 mm

• Fiber element length = 1.85 mm (13 elements/fiber)

• Drag law proposed by Marheineke & Wegener1 was used to model the drag force

Ongoing/Future Work: Modeling of Fiber Shaped Sorbents

Fiber mat after 551 fibers deposited

Contours of centerline z-velocity
(steady-state)

X

Z

1 N. Marheineke, R. Wegener, Modeling and application of a stochastic drag for fibers in turbulent flows, International Journal of Multiphase Flow, 2011, 37, 136-148.

Contours of pressure
(steady-state)



VISIT US AT:  www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

@NETL_DOE

@NETL_DOE

CONTACT:

NETL 
Resources

Hossain Aziz

Hossain.aziz@netl.doe.gov 

mailto:Subhodeep.Banerjee@netl.doe.gov

	Slide 1: Characterization of Solid Sorbent for Direct Air Capture of CO2 Using a CFD-Based Methodology
	Slide 2: Disclaimer
	Slide 3: Authors and Contact Information
	Slide 4: Project Overview
	Slide 5: Small-Scale Fixed Bed Testing
	Slide 6: Porous Media Model Solution Approach
	Slide 7: Porous Media Method Pressure Drop Calibration
	Slide 8: Isotherm Fit for Adsorption of CO2 from Dry Air
	Slide 9: Dry Adsorption Rate Calibration
	Slide 10: Effect of Humidity on CO2 Adsorption
	Slide 11: Modified Setup for Humid Adsorption
	Slide 12: Humid Adsorption Breakthrough Results
	Slide 13: Effect of Humidity on H2O Uptake Capacity
	Slide 14: Modeling CO2 Adsorption from Humid Air
	Slide 15: Modeling CO2 Adsorption from Humid Air
	Slide 16: Ongoing/Future Work: Scale-up to Bench Scale
	Slide 17: Ongoing/Future Work: Scale-up to Bench Scale
	Slide 18: Ongoing/Future Work: Modeling of Fiber Shaped Sorbents
	Slide 19: Ongoing/Future Work: Modeling of Fiber Shaped Sorbents
	Slide 20: Ongoing/Future Work: Modeling of Fiber Shaped Sorbents
	Slide 21: NETL  Resources

