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Fluidized Dense Phase Conveying (FDC)
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Neither retains air,
nor permeable

Aerates & retains air
(typically polydisperse)

Essentially monodisperse,
permeable

Particle density, kglm3

iy D Conveying pipeli
NON-5LUGGING R
DENSE PHASE FLOW
NN
IMPERMEABLE PLUG Blow tank
FLOW ‘\:\
102 : I e — 1-+— Compressed air
10 102 10° 10 m::::‘ﬁ;lg
Particle size, um . . . . Refer.ence: Mills (2004)
= — Typical Fluidized Dense Phase Conveying System and Operating Conditions
! ~ ar
I ~ & . . . .
P S Description Feed zone (F) Ambient Receiver (A)
. g - AL A [}
- e LA = & Maximum Solids loading (m) kg / kg of air 150 - 300
E e - S . A
2 e 8 o%e % Maximum Solids flux (G) kg / m%s 1000 - 3000
- 10%} . RN
o [ ~
= : ? N - B Pressure bar 25 -40 Ambient
Q.m ki ~ =
N Solids volume fraction ( &) - 0.09 - 0.38 0.03 - 0.18
~
c A Y i :
2 e Superficial gas velocity ( V) m/s 3-4 9 -12
102 ‘ D ' e —
10’ 10 10° . . Typically, up to a few hundred meters long,
T Conveying Pipeline = o . .
1 & >80 % horizontal, with several bends
‘ ® FDC A Dilute phase only Geldart A-B boundary at 4 bar per Grace (1986)
Conveying mode data from Jones and Williams (2008)
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Vertical up flow phase map
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Pneumatic Conveying Terminology

Fluidization Terminology
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Notes:

1. For 'slightly cohesive' powders (HR < 1.25) which are easy to aerate and
under well aerated conditions. They show clear pressure minima in the
conveying characteristics.

2. Impermeable plug flow may occur with slightly cohesive powders (HR <
1.25) in conventional FDC systems under inadequate aeration; sustained

\Decreasing superficial gas velocity at constant solids flux3

Fluidized
Dense Phase

Other Dense Flow patterns

| Fluidized Dense Phase Conveying!

Dilute Phase

operation may require a suitable feeder.
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Fixed Bed I Captive Fluidized Beds Transport Regimes
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£ Tg e % g s a § =7 3 S § % 2 § § § é E“ © § Sa> Referenes for the flow patterns: Bi et al., 2000, 1993; Bi and Grace, 1999; Cocco et al., 2010;
2 = E s ©° g é L E Ic] ] Kalman and Rawat, 2020; Klinzing et al., 2010; Kunii and Levenspiel, 1991; Liu et al., 1996; Loezos

et al,, 2002; Mills, 2004; Rabinovich and Kalman, 2011; Valverde, 2013; Wirth, 1988; Yerushalmi
and Avidan, 1985 6
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wes= - [ocus of the bottom dense zone . . .
( Locus of 6,4 c End of accumulative choking
== - |ocus of the top lean zone FZ - reed Zone (typical)
( Locus of G,)
- Progression of isoflux within FF AR - Ambient Receiver (typical)

(based on mean AP/AL across riser)

AP /AL — Pressure gradient; V4 — Superficial gas velocity; Viy — Minimum fluidization velocity; Vi, — Minimum
bubbling velocity; V. — Onset of turbulent fluidization; V.q— Lower transport velocity, V- — Upper transport
velocity; G— Solids flux; G% — Saturation carrying capacity; G — Gross upflow flux; G2 — Gg corresponding to Vi,
the threshold G for Dense Suspension Upflow; G 1 — G corresponding to V,q

Phase map of Wirth adapted for Geldart A powders
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DSU and its transition boundaries are not broadly accepted [Grace et al.(1999); Breault(2023)].

Different criteria have been proposed for the FF — DSU transition :
1. Disappearance of the s-shaped axial £5profile. [Li and Kwauk (1980)]
2. G at which net upflow is attained in the dense annular region [Kim et al. (2004)]

Recent experiment of Wang et al.(2022) (Fig.3 & 11) suggests that the FF — DSU transition (defined in this project as the
disappearance of the s-shaped axial £;profile) only occurs at gross upflow of solids in the entire riser (G%), with little
backmixing. However, this requires validation, as the solids entering (although fluidized) at a lower velocity at the riser
bottom could have formed a denser zone.

The locus of pressure minima is broadly accepted as the boundary with dilute phase conveying at low G (typically €5 =
0.02), however, its suitability for the high G of FDC requires validation.

Resolved experimental data for the packing limit is scarce, and hence an hypothetical limit is proposed, considering that
the dense locus (green) at V; < V1 is unique and independent of G, and that the limit essentially lies where the
available AP /AL balances the dominant losses under the dense conditions, static head of solids and drag.

References for the phase map: Adapted from Wirth (1988), with inputs from Bi et al., 2000; Breault, 2023; Cocco et al., 2010; Kim et al., 2004; Li
and Kwauk, 1980; Monazam and Shadle, 2011; Wang et al., 2022; Yerushalmi and Avidan, 1985
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Proposed correlation for the Upper transport
velocity (V,,,)
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Note: A linear model (R2 = 0.94) or an exponential model (R?=0.97) may offer a better fit; however, Re, — Ar
correlations generally follow power law and further rigour is not attempted considering the uncertainty in the data.

Powder

Catalyst

FCC catalyst

HFZ-20

Alumina (fine)

FCC catalyst
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Power law model for the data
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. Correlation of Monazam & Shadle (2011):
Based on indirect measurement of V., by column emptying times of solids (4 samples)
that (tend to) group B.
Reprp = 3.118 Ar0487 [1]

Proposed (provisional) correlation:

Based on 5 (sketchy) data points reported in the literature, for solids that clearly classify as
group A, by direct measurement of V4,5 in CFB experiments at ambient conditions.

Rep'trz = 3.00 AT‘O'80 2]

30 85 Provisional, considering the recognized uncertainties in the data, and as the dependence
on riser diameter (D) and fraction of fines (P4s5) are not incorporated. However, it
sufficiently demonstrates that V- is significantly higher than predicted hitherto.

V2 data from literature for Geldart A powders

L L/D Ar V2 (Reported), m/s Rep 2 Vir2 (Predicted), m/s Reference

m Reported Used Per [1] Per [2]
11.5 61 1.48 1.8 1.8 3.62 1.88 2.04 (Wirth, 1988) (Fig.7, pp.15)
5.0 100 4.42 25&3.5 3.0 11.05 1.74 2.68 (Mori et al., 1992)

8.5 56 6.22 >4.1 5.0 16.41 2.31 3.95 (Yerushalmi and Avidan, 1985)

(Fig.7.21 b, pp.259)

8.0 89 17.75 >5.0 6.0 21.70 3.50 8.29 (Li and Kwauk, 1980) (Fig.2, pp.540)

18.0 225 33.60 >9.0 10.0 56.93 3.03 8.77 (Wang et al., 2022) (Fig.11 - Il, pp.8)

NETL 2024 Workshop on Multiphase Flow Science, Aug 13-14, 2024



Recognized uncertainties in the V¢, data points:
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Wirth (1988) had only reported V; for the “finely divided catalyst’
powder; d, has been estimated considering a p of 1500 kg/m?3.

Mori et al. (1992) had reported two different values for V.5,
which is rather unique, affected by system design and operation;
average of the values is used.

Yerushalmi and Avidan (1985) had reported data for the HFZ-20

powder only up to a V4 of 4.1 m/s, at which the axial S-shaped
&, profile is still very prominent; a V- of 5 m/s is used.

Li and Kwauk (1980) had reported data for the fine alumina only up
toaV, of ~ 5.0 m/s, and had projected a V¢, of ~ 6.0 m/s.

Wang et al. (2022) data for the FCC catalyst is limited to 9.0 m/s, at
which they had approached (but not attained) V2 ; a Vi,-p of 10
m/s is used.

Differences in flow behaviour of Geldart A and B powders in CFB:

Dependence of both V.4 and V4,2 on G5 is intuitive.

Experiments have shown that G3 increases with D for Geldart A but
decreases for Geldart B; and in fact Breault et al. [Breault and Weber(2021) ; Breault
etal.(2021)] have proposed separate correlations for groups A and B.

While &5 is ~ 0.01 for Geldart B, it increases with decreasing d,,
and/or pg to ~ 0.03 for Geldart A. (sietal. (1995)]

V1 Is @ higher multiple of V; for Geldart A than for Geldart B, also
increasing with decreasing dp and/or pg. [Bietal. (1995)]

Dependence of V¢, onriser diameter (D):

Wang et al., (2022) approached (but not attained) V-, at a V4of 9 m/s
with a FCC powder ( d}, (85 um), ps (1500 kg/m?) and P45 (~10 wt.%)) in
ariserof D =0.08 m.

However, Issangya et al., (2023) observed very prominent axial S-shaped
&, profile at a V4 of 12.2 m/s (G4 = 285 — 690 kg/m?s) in a riser of D =
0.303 m, also with a FCC powder of similar d,, (79 pm), p, (1490 kg/m3)
and P45 (~8 wt.%).

NETL 2024 Workshop on Multiphase Flow Science, Aug 13-14, 2024
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Validation by Eulerian modelling with MFiX-TFM

» Powder characteristics

» Modelling options

» Challenges in model validation

» FF— DSU boundary at gross upflow
» DSU — dilute phase boundary

» Packing limit
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> Powder Characteristics

Characteristics of the (hypothetical) powder at ambient conditions

Particle diameter

Particle density
Archimedes number

Void fraction loose packed
Interparticle restitution
Particle — wall restitution
Angle of wall friction
Angle of internal friction
Terminal settling velocity
Min. fluidization velocity

Min. bubbling velocity

Lower transport velocity

Upper transport velocity

dp

Ps
Ar

)

s,max

ce

ew

Phi_w

Phi
Vv,

t

v, f
Vmb
Vtrl
"

tr2

um

Kg/m3

o

m/s
m/s
m/s
m/s

m/s

70
1400
17.5
0.60
0.95
0.89
11.86

30

0.186

0.004

0.012

1.4

6.3

Validation by Eulerian modelling with MFiX-TFM

Monodisperse

Maximum packing limit

Used for simulations

Foerster et al.(1994), Drake(1991),
(6mm cellulose acetate spheres)

McKeen & Pugsley (2003)

Kunii & Levenspiel (1991)

Bi et al. (1995)

Proposed (provisional)
correlation

Particles do not agglomerate or deform permanently; no electrostatic effects or liquid bridges.

1
University

10*

4 A=t Ar=10 Ar=100 A=10°  Ar=10*
107 N \ i Selected powder:
: \ ® 70 um, 1400 kg/m®
N X Pickup Velocity monodisperse
| Ar=16.5
N Bo_ =1 !
U g
o« ‘.
£
— “ ‘, \
_3’ ', Bed Expansion
Y o\d_ =55 pum
o
o Nt R
[] s L
" ] ;
Q‘ \‘ \ \
C\ A B D
102 ; ‘ Ar=0.1 ArTO0T T AT 3 A=10° ‘
10 10
dp , pm
Threshold for dominant van der Waals forces over gravity
Different criteria have been proposed for dominant van der Waals forces over gravity:
(1)  d,=55 um, based on bed expansion [Loezos et al.(2002), Wang et al.(2011)]
(2) Bog (granular bond number) =1 [Valverde(2013)]
(3) Ar=16.5, based on pickup velocity [Kalman et al.(2005)]
Cohesion model is not considered essential for the monodisperse powder selected.
13
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Validation by Eulerian modelling with MFiX-TFM

» Modelling options — Simulation conditions

Geometry and numerics
Modelling options are largely in line with Balasubramanian et al.(2023)

Description Nominal grid Fine grid
Description Nominal Alternate Riser (pipeline) diameter D m 0.04 0.04
MFiX version 22.3.1 223.1 Riser (pipeline) length L m 10.0 9.999
Viscous stress model Simonin Lun et al.(1984) Grid 20 x 5000 40 x 9999
Turbulence model k-epsilon == Cell size m 0.002 0.001
Frictional stress model Princeton Princeton Cell size in particle diameters 29 14
Inlet & Outlet BC Mi & PO Mi & PO Maximum time step s 3 x 105 1x10°5
Wall BC for gas phase NSW (Wall functions) NSW Parallel processing DMP (1-8-1) DMP (1-16-1)
Wall BC for solids phase FSW / JJ-Mod FSW Discretization Superbee
Drag model Di Felice Di Felice Tolerances Default
Cartesian 2D Optimum underrelaxation factors that prevent backflow with pressure outlet BC
(Reproduced from Balasubramanian et al. (2023)) (Reproduced from Balasubramanian et al. (2023))

Advantages:

For 2D Cartesian grid simulations #
Matches the wall profile (although in 2D).

Qualitatively well predicts bed expansion, bubble rise, core- Under relaxation factor Default Selected Remarks
annular flow, clusters and streamers, etc. UR_FAC(1) Gas pressure 0.8 0.8 Improves stability
Lower computational cost for long pipe models (e.g., S-
shaped profile). UR_FAC(2) EP_s 0.5 1.0
Offers rigorous wall BC. UR_FAC(3&5)  U&W-Momentums 0.5 0.5  Improves stability
Disadvantages: UR_FAC(4) V-Momentums 0.5 1.0 Set at 1.0 to avoid backflow at no / low solids loadings
Does not capture the inherent 3D nature of gas-solids flow.
. .. . UR_FAC(8) Granular temperature 0.5 0.5 ~1in 3 runs diverges without underrelaxation
Numerical predictions can be affected by asymmetric flows,

e.g., inlet and outlet configurations. (Li et al. 2014-1) UR_FAC(9) k-e 0.8 1.0 Set at 1.0 to avoid backflow at no / low solids loadings

May not simultaneously predict axial pressure profile and

R_F D 1.0 0.0 Improves stability at ~ 3% increase in wall time
radial voidage accurately. (Li et al. 2014-I1) UR_F_GS rag s — of fnwallH

# - May not be suitable for other coordinate systems or simulation conditions




Validation by Eulerian modelling with MFiX-TFM
» Modelling options — Model scheme

| i | PRINCETON|
I | | MODEL FOR|
| { | FRICTIONAL!
: : | STRESSES |
P I SIMONIN MODEL FOR TURBULENCE AND GRANULAR KINETIC THEORY I )= I
o) H F t .
£ : : : 1| Intermfadlate
© : ! : : : (GKT + Princeton)
:g’ : : : : ! Plastic
5 : : : : : (Friction by Princeton)
2 1 i 1 | 1{1
< ( Dilute ’( Transition e Dense i€ i Paciad bad
/ - - ) £ 2 | P | I 1
(Turbulence by Simonin) (Simonin + GKT) i (Collisions by GKT) ! v
I | | [ |
I | | [
l ~ i. : i ot i i : l ~ i : L. 1 Yield Stress overcome
Is 1';5 : Ts T;S Ts { Ts Te { : : (Viscous - Plastic
: : : : 1 boundary)
: . . L Maximum
0.001 0.01 0.1 0.5 0.6 packing limit

Solids volume fraction, &;

Simonin viscous stress model covers dilute turbulent through to the dense limit of viscous regime by a harmonic mean of collisional and
particle relaxation time scales; Simonin’s turbulence model and the GKT are recovered at the dilute and dense limits, respectively.

T, - Dissipation time scale, s Tys - Particle relaxation time, s < - Collisional time scale, s

Reference: Balzer et al.(1996) Benyahia et al.(2005) & (2007), Srivastava & Sundaresan (2003)
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Pseudocolor
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0.4432 0.7216 1.000

t=10s

Max: 1.000
Min: 0.4432

G, =500 kg/m?s
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Run VDUOO4

10

B
)
4
2
-10 (2] 10 20
D, (x10"-3)
Pseudocolor
Var: EP_G
0.4680 0.7338 0.9996
Max: 0.9996
Min: 0.4680 t=10s
— 2
G, = 1000 kg/m?2s
Run VDUOO1

Validation by Eulerian modelling with MFiX-TFM
»  Challenges in model validation — Lower & at the walls at higher G

o
4
2
-10 (] 10 20
D, (x10"-3)
Pseudocolor
Var: EP_G
0.4693 0.7343 0.9993
Max: 0.9993
Min: 0.4693 t=10s
— 2
G, = 1500 kg/m?2s
Run VDU0O2

L, m

-10 0 10 20
D, (x10"-3)

Pseudocolor
Var: EP_G
0.4703 0.7319 0.9934
Max: 0.9934
Min: 0.4703 t=10s
= 2
G = 2000 kg/m?2s
Run VDUOO3
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20x5000x1,V,4=3 m/s, Simonin, JJ-Mod, c_e = 0.87, e_w = 0.89

-
o
-

0.5 0 0.5

E
~10*
=
1 0 1

-

Radial distance, r/R

Legend: At elevation 9m  7m 5m

2000
Nlﬂ )
E 1000 =
o oo
* o
S 8
U} I
41000 &
4 05 0 05 1
2000 "
W ~
o~
£ 1500 £
B 2
2 1000 p
- ]
" 500 —
(O] 1
0 &
4 0 1
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-

500
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2500

U

~
£
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<

8

1500 e
o~

n
1000 “
A 0 1 O

Radial distance, r/R

* Solids displaced from wall at high G, apparently due to dissipation of 6 in the bulk.

* Similar spike in G in the pre-wall region can be seen in the experimental data of
PSRI: Fig.8 of Issangya et al.(2023) and Fig.26 of Cocco et al.(2010).
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Validation by Eulerian modelling with MFiX-TFM

. . . . Legend: At elevation 9m 7m  5m
»  Challenges in model validation — Lower & at the walls at higher G 20
I _ » 2000 o
= = o E =
— —s o~ ) L]
— = £ = 1500 I
| — — = o o
= =" 10 o
— — |
b 1000
—— A 0 2 0 1
10°
22000 (<))
o T T————\ o
TN J 2 o
= -, 1500 Il
5 L) q"|
10 s
) 1000
- (] 1 - 0 1
3 10°
o 2000 — ~ =2
@ 102 E &
E 2 %
. < 1500 ©
< 10 » °
_ 0 §
10 1000
-1 -0.5 0 0.5 1 -1 0.5 0 0.5 1
Radial distance, r/R Radial distance, r/R
* Solids are not displaced from the wall with elastic particles but are even with c_e = 0.99 . This would similar to that
reported in early TFM literature (e.g. Pita & Sundaresan, 1991).
* Solids are displaced from the wall with the following options too:
-10 o0 10 20 -10 0 10 20 -io o 10 20 v' Simonin with FSW
D, m (x10"-3) D, m (x10"-3) D, m (x10"-3) .
Pseudocolor Pseudocolor Pseudocolor v" Lunetal. withJJ-Mod
Var: EP_G Var. EP_G Var: EP_G
0.4615 0.6088 0.7561 0.4748 0.7321 0.9895 0.5767 0.6643 0.7518 * Not due to turbulence wall functions:
B t=5s e Lo t=5s Mﬁ.’fo‘.’s’f?f’ t=17s = No perceivable change when wall functions are turned off with Simonin + FSW.
= No perceivable change when k-epsilon turbulence model is turned on with Lun et al. + FSW
c_e =1.00 c_e =0.99 Lun et al. + FSW peree’ ,g j e .
(NSW for gss & no turbulence model) * Lun et al. with FSW gives smooth results, although with high dissipation of 8 in the bulk. Hence
Run VDUG20 Run VDUO21 Run VDU023 has been used for comparison runs. (High inlet transition length with this option has been accounted for.)
@C;gcﬂem“ 20x5000x 1, V 4= 3 m/s, G;=2000 kg/m?s, Simonin, FSW
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Validation by Eulerian modelling with MFiX-TFM

-~ = Locusof
-~ Pressure minima

Lines of constant G,
( 'isoflux’)

Vsh’p

me/
Emf

c Vtri

v,

(1 = 85)

Slip velocity (V ;) in CFBs

@J
Glasgow Caledonian

University

Ve

Vipin FF is reported to
be up to an order of
magnitude higher than V;
to increase with Gg; and
even higher under dense
upflow. However, the
model predicts a steady
decrease with G .

Yerushalmi & Cankurt (1979),
Grace (2000), Benyahia &
Sundaresan (2012)

Challenges in model validation — Lower V g;,, than reported in the literature

20x5000x 1, Vg= 3 m/s, Simonin, FSW, c_e = 0.95, Di Felice

Legend: At elevation 9m  7m 5m

0.3 03 03 0.3
i () 0 o
E 025 €025 E 025 £ 025
) %‘ 02 FNHINN A 2 02 V,
(=] [*] o
E 0.15 g 015! E 0.15/ \ E 0.15
2 04 £ 04 £ o1 2 o4,
@ e ’ 0.05 5 = @
o5 0 o5 1 s 0 05 4 8 U W 5 08 95 o o5 1
G, = 50 kg/m?s G;=100kg/m?s G, =300 kg/m?s G, = 500 kg/m2s
RunVDU024 Run VDUO25 RunVDU026 RunVvDUO027
0.2 0.2 02
0 2 2 L |
E E s E 15 € 15/ Vt
2 2 2 2
H 8 01 S o4 EY
g [ 'Tg" ﬁi\\ -;g'
= 8005 2005 0005 ===
0 - - - ' 0 . - . 0 | | | 5
SO 4 05 0 05 1 4 05 0 05 1 4 a5 0 05 1
G, =750 kg/m?s G;=1000 kg/m?s G, =1250 kg/m?s G = 2000 kg/m2s
Run VDU029 Run VDUOO9 Run VDU030 Run VDUO12
03 02 03 0.2
2 2 o
Eﬁnzs sl £tz cT; 015 Vt
2 02 2 2 02 &
3015 5 o 5015‘ g
© 0. ° o0 g
> > > o
S 0.0.05 a £0.05
= 0.1 = \V_ ‘N\J = 041 @ )
0'05-1 0.5 0 0.5 1 Y 05 0 05 1 %, 0.5 0 0.5 1 = nhS 0 o> 4
— 2 = 2
G, = 100 kg/m2s G = 2000 kg/m2s G =100 kg/m?s G =2000 kg/m?s
Runvbuosl  Fine grid: 40 x 9999 x 1  RunVDU028||  RunVDUOAL Lun et al. RunVbU023
* Gidaspow blend drag model has not made any material difference either.
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Validation by Eulerian modelling with MFiX-TFM
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0 0.2 0.4 radial cells. 0 0.2 0.4
&g &g

Fraction of downflowing cells
G =500 kg/m?s

Run VDU027

Fraction of downflowing cells
G, =750 kg/m?s

Run VDUO29

Downflowing annulus Approaching net upflow

@J
Glasgow Caledonian

University

Validation: FF — DSU boundary at gross up flow of

Riser elevation, m

solids

20x5000x 1, Vg= 3 m/s, Simonin, FSW, c_e = 0.95, Di Felice

Fraction of downflowing cells

G, =1000 kg/m?s

Run VDUOOS

Net upflow

S-shaped axial & profile clearly seen.
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Legend: At elevation 9m 7m  5m
10 2000 10 1600 |
w 1500 » 1400
o~ ~
E E
2 1000 2 1200}
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8 500 8 1000
0 800 ;
A 0.5 0 0.5 1 - -0.5 0 0.5 1
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2000 1600
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0 0.2 0.4 0 0.2 0.4
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Fraction of downflowing cells
G, =1250 kg/m?s

Run VDU0O30

Gross upflow

S-shaped axial &¢ profile has disappeared.
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Validation by Eulerian modelling with MFiX-TFM
» Validation: DSU — Dilute phase boundary and packing limit

A_P )’/V“![ Packing limit - 6000 10-2 021
AL \ 1;”'1’ (hypothetical) - ’Prcs:S::fn?r{ima . Vt
' %w" b e 5000
AP \ e ; E 0.15
\az) [+t e © o/
2 o 4000 ~N 107 =
g L4 g
E & =1 3000 = & 01
o " < 2 5
! : E 2000 < 104 =
: = 0.05 |
| | 1000 |
I ]
1 ] h
1 g 0 ' ‘ 0 ‘ ‘
[ : Lme:{c:{;;;;-:‘s:f:)nt G, 0 5 1 0 0 5 1 0 0 5 1 0

vy V. Vo v, V_ ,m/s V_ ,m/s V ,m/s
g g g

Solids flux = 2000 kg / m? s
. * For the conditions simulated, pressure minimum is not attained at the ambient receiver.

Conditions at the feed zone:
V, =3 m/s at 4 bar

* Trends in granular temperature and slip velocity are probable aternate variables to perceive the transition.
* As precited by Granular Kinetic Theory, gravity dominates the pressure drop at the packing limit and drag is insignificant (due to
the very low slip velocity).

* Contribution of other pressure losses (drag, etc.) increase from ~ 2% at the packing limit to > 20% at the ambient receiver.
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» Vertical upflow phase map of Wirth adapted to locate Fluidized Dense Phase Conveying of Geldart A powders. The Areas identified for further research:

map demarcates the boundaries of Dense Suspension Upflow with Fast Fluidization, dilute phase conveying and 1. CFB experiments to measure V.., of
. il o tr2
the packing limit. py P

i it g group A powders, incorporating
" various riser diameters and fines
fractions, for a robust correlation.

2. Validation of the TFM model for high
solids flux applications.

v, 10 2000

* Proposed a provisional correlation for the Upper transport velocity (V,,2) of group A powders, based on a limited
(sketchy) data set, without accounting for its dependence on riser diameter (D) and fines fraction (P4s). The

correlation sufficiently demonstrates that is significantly higher than hitherto predicted. g
0
Rep,tT'Z = 3'00 Ar080 ! :ailia\ disntance.l:;! 1
* Highlighted the challenges faced in validating the MFiX-TFM model at high solids flux: low solids concentration §6 . '
near the wall and lower slip velocities than reported in CFB experiments. .g £ 2
o 2 1000
* Demonstrated (based on the experimental results of Wang et al.(2022) and Eulerian modelling) that the transition i ; © aje
(14
from Fast Fluidization to Dense Suspension Upflow, defined as the disappearance of the S-shaped axial profile T
only occurs at gross upflow of solids in the entire riser. Radia distance, riR
* For the conditions simulated, transition to dilute phase conveying is not perceived at the ambient receiver based 2
on the pressure gradient.
* Packing limit, as predicted by the Granular Kinetic Theory is largely due to static head of solids (as the predicted

slip velocity is very low). 0 0.2 04

€
C;I:;aw Caledonian
University

s

Fraction of downflowing cells
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