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• Molten plastic that forms during the pyrolysis of plastic or municipal solid waste feedstock can lead to particle agglomeration
• A proof-of-concept of a liquid bridge model is developed based on Grohn et al.1 and verification studies are completed

Liquid Layer Development Proof-of-Concept 

• Molten plastic droplet deleted on contact 
with sand particle and mass and species 
transferred in perfectly inelastic collision

• Conservation of mass and momentum 
verified numerically

No liquid bridge

Liquid bridge capillary force only

• Capillary forces are based on 

Laplace pressure2

𝐹𝑐𝑎𝑝,𝑝𝑝 = −
4𝜋𝑅𝛾 cos 𝜃

1 + 1 +
2𝑉𝑏

𝜋𝑅ℎ2 − 1

−1
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• Tang et al.3 modeled their 

experiment using MFiX-DEM; 

simulations were run for 15 s 

and results averaged over 

final 10 s

• Drag model used is Beetstra4

• Capillary force

• Viscous forces

• Critical rupture distance

Spouted Bed Experiment/Model of Tang et al.

𝜑

𝜑
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Liquid Volume Fraction = 0.10%; Equivalent Film Radius = 0.5 μm

Wet Model Validation

0 mPa-s 20 mPa-s 100 mPa-s
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Liquid Volume Fraction = 10%

Effect of Liquid Volume

0 mPa-s 20 mPa-s 100 mPa-s
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Liquid Volume Fraction = 50%

Effect of Liquid Viscosity

20 mPa-s 200 mPa-s 2000 mPa-s
(dtsolid reduced)
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Liquid Volume Fraction = 50%

Effect of Liquid Surface Tension

19 mN/m 40 mN/m 80 mN/m
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• The liquid bridge model in MFiX for cold flow 
was extended to implement a novel capability 
that explicitly models the mass, volume, 
and species of the liquid layer 

• The evolution of the liquid bridge forces can 
be accurately modeled as the liquid volume 
changes (e.g., during pyrolysis)

• The “last species” volume is used to compute 
the capillary force instead of externally 
defined volume

Liquid Bridge Model Implementation for Pyrolysis

DIST_MAG

DES_RADIUS(LL)

DES_RADIUS(I)

DES_VEL_NEW(LL)

  – DES_VEL_NEW(I)

V_REL_TRANS_NORM
VREL_T

R_LM = DES_RADIUS(LL) + DES_RADIUS(I)

OVERLAP_N = R_LM – DIST_MAG

H_BR = MAX(1.0d-5, DIST_MAG – R_LM)

DES_VEL_NEW(LL)

DES_VEL_NEW(I)
volLL = DES_X_s(LL,NMAX(phaseLL)) * PMASS(LL)

  / RO_Xs0(phaseLL,NMAX(phaseLL))
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• Liquid layer in Tang et al.’s model is replaced with melted LDPE and allowed to pyrolyze to a gas 
pseudospecies: LDPE(liq) → Volatiles(gas) , 𝐴 = 121.0 ∙ 109 Τ1 s , 𝐸 = 159 ∙ 103 ΤJ mol

Transient Evolution of Liquid Layer Validation

From left to right: Reacting w/o LBM, non-reacting w/ LBM, reacting w/ LBM
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• Reaction mechanism from Ding et al.5/Encinar et al.6 simplifies pyrolysis products to separate pseudo-
species representing gas and oils: LDPE → 0.4 ∙ Gas + 0.6 ∙ Tar; 
𝐴 = 2.30 ∙ 1018 s−1;  𝐸 = 285.7 ΤMJ kmol ;  Δℎ = 975 ΤkJ kg 

• Tar → Gas;  𝐴 = 4.25 ∙ 106 s−1;  𝐸 = 108.0 ΤMJ kmol ;  Δℎ = −42 ΤkJ kg 

Effect of Agglomeration on Pyrolysis

From left to right: Reacting w/o LBM, reacting w/ LBM

Dotted lines: w/o LBM, Solid lines: w/ LBM

Dotted lines: w/o LBM, Solid lines: w/ LBM
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• Established CFD model of conical spouted bed 
reactor with continuous plastic feed based 
(loosely) on pilot-scale reactor of Aguado et al.7 

• As the plastic material is introduced into the 
reactor, it melts onto the sand particles and 
coats them

• If the thickness of the layer that coats the 
particles is lower than a critical value, the 
sand particles do not fuse

• Beyond this value, agglomerates grow 
irreversibly, and total blockage of the bed 
or defluidization is the result

• Good performance is determined on the basis 
of the critical thickness of the melted plastic 
that can be handled

• Sensitivity to solids holdup, material size/type, 
and fluidizing velocity can be compared

Continuous Operation Validation

Variable Value Unit

bed size in x, y, and z directions 125 × 340 × 125 mm

cell numbers in x, y, and z directions 12 × 35 × 12

Sand

particle diameter, dp1 1.00 mm

particle number, Np1 22,000

particle density, ρp1 2,600 kg/m³

Plastic (LDPE)

particle diameter, dp2 0.50 mm

particle density, ρp2 930.0 kg/m³

feed velocity, up2 0.0625 m/s

spouted gas velocity, Usp 3.0 m/s

liquid viscosity, μlb 100.0 mPa·s

0.205

0.340

0.020

0.123
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• Pyrolysis reaction occurs directly from plastic particles (no mass transfer to sand bed)

Baseline Results with No Melting
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• Plastic particles ≳200 °C are considered to be melted and allowed to fuse with the sand 
particles on contact; the liquid volume is subsequently redistributed between sand 
particles during sand-sand collisions

• Agglomeration due to cohesive liquid bridge forces causes the reactor to defluidize; the 
blockage dissipates when inlet velocity is increased from 3 m/s to 3.25 m/s after 2.5 s 

Results with Melting and Agglomeration
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• The agglomeration-induced defluidization occurs during initial startup when particle 
temperatures and hence pyrolysis rates are low 

• If the startup velocity is 3.25 m/s for 2.5 s and subsequently reduced to 3 m/s, the bed is 
hot enough such that continuous operation prevails even at the lower velocity

• As such, the MFiX model with liquid bridge implementation can help to optimize the 
operating envelop for minimal impact on the performance of the pyrolysis reactor

Results with Melting and Agglomeration
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• Dr. Tafti simulated the actual collision/coating process between liquid 
plastic and sand for a range of important non-dimensional ratios of inertial, 
viscous, and capillary forces

• For liquid viscosity of 1 kg/m-s (1000 mPa-s), the liquid transfer time was 
around 1 ms

• To incorporate a finite (i.e., non-instantaneous) liquid transfer time during 
the redistribution of the liquid layer during particle separation, the amount 
of mass transferred is multiplied by a coefficient

xferMass = 1.0d0 * abs(massLL - massI) / 2.d0

• The coefficient could be determined as a ratio of the collision time to the 
liquid transfer time constant from Dr. Tafti

Non-Instantaneous Liquid Distribution
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• Sensitivity to the mass transfer coefficient is determined for values of 1.0, 0.01, and 0.0001 
(without reactions)

• The liquid transfer time is expected to be higher for more viscous plastics

Non-Instantaneous Liquid Distribution
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• Repeat of earlier result with increased solids holdup and fixed mesh at different inlet 
temperatures compared with inert case

• Recall simplified reaction: LDPE(liq) → Volatiles(gas) , 𝐴 = 121.0 ∙ 109 Τ1 s , 𝐸 = 159 ∙ 103 ΤJ mol

Instantaneous Liquid Distribution + Pyrolysis

Inert 400 °C 800 °C
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• Mass transfer ratio = 0.01

Non-Instantaneous Liquid Distribution + Pyrolysis

Inert 400 °C 800 °C
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• Mass transfer ratio = 0.0001

Non-Instantaneous Liquid Distribution + Pyrolysis

Inert 400 °C 800 °C
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