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*  Molten plastic that forms during the pyrolysis of plastic or municipal solid waste feedstock can lead to particle agglomeration

« A proof-of-concept of a liquid bridge model is developed based on Grohn et al. and verification studies are completed
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Spouted Bed Experiment/Model of Tang et al.  [N=]anona
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variable value unit .
Particle « Tang et al.> modeled their
patticle diameter, d, 3.00 mm experiment using MFIX-DEM;
icle number, N . .
y ke don vt g/ simulations were run for 15's
+Pp
bed size in x, y, and z directions 150 x 20 x 800 mm Ond reSU”S Ovel’(]ged over
cell numbers in x, y, and z directions 15 x 3 X 80 f|n0| ‘| O S
coeflicient of restitution, e 097
I coefficient of sliding friction, [’ 0.10 . H 4
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N o g e b 000 we ° Capillary force
tangential spring stiffness, k, 286 N/m 27 ’}"R cos 6 ] .
gas Foppn =— m — 2myR sin @ sin(y + 6)
spouted gas velocity, U, 41.2 m/s R VlSCOUS fOI’CGS
density, p, L2 q kg/m?* R
viscosity, u 1.8 x 107 Pa-s = L _
outlet pressure, P 1.3 x 10° Pa F“:“ o GWMHQREUTELH
iquid 4 8 R
relative liquid volume, Vi 0.10%, 0.50% Fv,t = ﬁﬂ—#ﬁqﬂ(ﬁ In E + 0.9588)ﬁrd1t
liquid viscosity, gy, 10, 20, 50, 100 mPa-s ey .
contact angle, 0 % deg « Critical rupture distance
surface tension, y 0.019 N/m
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Wet Model Validation N=|NATIONAL
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Effect of Liquid Volume
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Liquid Volume Fraction = 10%
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Effect of Liquid Viscosity —|NATIONAL
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Liquid Volume Fraction = 50% LABORATORY
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Effect of Liquid Surface Tension =|NATIONAL
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« The liquid bridge model in MFiX for cold flow
was extended to implement a novel capability
that explicitly models the mass, volume,
and species of the liquid layer
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« The evolution of the liquid bridge forces can
be accurately modeled as the liquid volume
changes (e.g., during pyrolysis)

« The "last species” volume is used to compute
the capillary force instead of externally
defined volume

volLL = DES X s (LL,NMAX (phaseLL)) * PMASS (LL)
/ RO XsO (phaseLL, NMAX (phaseLL) )
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Transient Evolution of Liquid Layer Validation N = |NATIONAL
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« Liquid layer in Tang et al.’s model is replaced with melted LDPE and allowed to pyrolyze to a gas
pseudospecies: LDPE;q) — Volatilesg,s), A =121.0-10°1/s,E = 159 - 10° J/mol

From left to right: Reacting w/o LBM, non-reacting w/ LBM, reacting w/ LBM
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Effect of Agglomeration on Pyrolysis
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« Reaction mechanism from Ding et al.°/Encinar et al.6 simplifies pyrolysis products to separate pseudo-

species representing gas and oils: LDPE - 0.4 - Gas + 0.6 - Tar;
A=230-108s"1, EF =285.7MJ/kmol; Ah =975kJ/kg
« Tar- Gas; A =4.25-10°s71; E =108.0 MJ/kmol; Ah = —42kJ/kg

From left to right: Reacting w/o LBM, reacting w/ LBM
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Continuous Operation Validation
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Established CFD model of conical spouted bed Broduct @@»'i_ sand
reactor with continuous plastic feed based T @ o
(loosely) on pilot-scale reactor of Auado et al.”
« As the plastic material is infroduced into the
reactor, it melts onto the sand particles and 3“123
coats them OEIQ{O D,
- If the thickness of the layer that coats the F /2D,
parficles is lower than a critical value, the 0.205 D,
sand particles do not fuse 1 Yo
« Beyond this value, agglomerates grow P nitrogen
irreversibly, and total blockage of the bed Variable Value Unit
HP H H ed size in x, y, and z directions X X mm
or defluidization is the result ol manbem g sl diions 12X BT
Good performance is determined on the basis e . .
of the critical thickness of the melted plastic iamdenumber,}qi 22,000
that can be handled particle density, o, 2,600 kg/m’
Plastic (LDPE)
Sensitivity to solids holdup, material size/type, particle diameter, d,, 0.50 mm
and fluidizing velocity can be compared . v e
spouted gas velocity, Uy, 3.0 m/s

liquid viscosity, p, 100.0

mPa-s
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Baseline Results with No Melting N=|HanonaL

TL TECHNOLOGY

LABORATORY
« Pyrolysis reaction occurs directly from plastic particles (no mass transfer to sand bed)
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» Plastic particles =200 °C are considered to be melted and allowed to fuse with the sand
partficles on contact; the liquid volume is subsequently redistributed between sand
particles during sand-sand collisions

Temperature (K) LDPE rnass fraction
FHS 800 Q00 1000 H?&S 0 0.005 001 0015 002 0025 002

e o s
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‘ L »
gl iy pRl iy
> » 0 0.5 1 15 2 25 3 35 4 45 5
Time (5)
O..

Time: 0.01 s

« Agglomeration due to cohesive liquid bridge forces causes the reactor to defluidize; the
blockage dissipates when inlet velocity is increased from 3 m/s to 3.25 m/s after 2.5 s
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« The agglomeration-induced defluidization occurs during initial startup when particle
temperatures and hence pyrolysis rates are low

« |f the startup velocity is 3.25 m/s for 2.5 s and subsequently reduced to 3 m/s, the bed is
hot enough such that continuous operation prevails even at the lower velocity
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« Assuch, the MFIX model with liquid bridge implementation can help to optimize the
operating envelop for minimal impact on the performance of the pyrolysis reactor
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« Dr. Tafti simulated the actual collision/coating process between liquid
plastic and sand for a range of important non-dimensional ratios of inertial,

viscous, and capillary forces

« For liquid viscosity of 1T kg/m-s (1000 mPa-s), the liquid transfer time was
around T ms

« To incorporate a finite (i.e., non-instantaneous) liquid transfer fime during
the redistribution of the liquid layer during particle separation, the amount
of mass fransferred is multiplied by a coefficient

xferMass = 1.0d0 * abs (massLL - massI) / 2.d0

« The coefficient could be determined as a ratio of the collision time to the
liquid transfer time constant from Dr. Taffi
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« Sensitivity to the mass transfer coefficient is determined for values of 1.0, 0.01, and 0.0001

(without reactions)
IVI Time: 0.01's J.;-‘

« The liquid transfer time is expected to be higher for more viscous plastics
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« Repeat of earlier result with increased solids holdup and fixed mesh at different inlet
temperatures compared with inert case

* Recall simplified reaction: LDPE;q) — Volatiles g, , A =121.0-10°1/s,E = 159 - 10° J/mol
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Masss tfransfer ratio = 0.01
IV’I Time: 0.01 s J,”

VYV

Inert 400 °C 800 °C




Non-Instantaneous Liquid Distribution + Pyrolysis =
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Masss transfer ratio = 0.0001
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