To hinder or to enhance? Clustering and settling behavior of polydisperse, gas-solid flows

E. Foster^{*}, E.C.P. Breard $\stackrel{\blacklozenge}{\ldots}$ S. Beetham^{*}

 \star Oakland University, Department of Mechanical Engineering University of Edinburgh, School of Geosciences \diamond University of Oregon, Department of Earth Sciences

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) [Next steps](#page-46-0) Polydisperse gas-solid flows are everywhere

∍

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) [Next steps](#page-46-0)

 Ω

Polydisperse gas-solid flows are everywhere

 \Rightarrow

Þ

 2990

 \mathbb{R} is Þ 2990

How does polydispersity impact mesoscale clustering & settling behavior?

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) Settling Behavior Settling Behavior [Next steps](#page-46-0)

 2990

 \Rightarrow

An Euler-Lagrange approach

Simulations solved using NGA^1 :

Finite volume DNS/LES code

Conservation of mass and momentum

$$
\frac{\partial}{\partial t} (\alpha_f \rho_f) + \nabla \cdot (\alpha_f \rho_f \mathbf{u}_f) = 0
$$

$$
\frac{\partial}{\partial t} (\alpha_f \rho_f \mathbf{u}_f) + \nabla \cdot (\alpha_f \rho_f \mathbf{u}_f \mathbf{u}_f) = \nabla \cdot \boldsymbol{\tau} + \alpha_f \rho_f \mathbf{g} + \mathcal{F}_{\text{inter}}
$$

 1 Desjardins et. al (2014)

 $\mathbf{\Theta}$

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) Settling Behavior Settling Behavior [Next steps](#page-46-0)

 2990

Þ

An Euler-Lagrange approach

Simulations solved using NGA^1 :

Œ

Finite volume DNS/LES code

of mass and momentum

$$
\frac{\partial}{\partial t} (\alpha_f \rho_f) + \nabla \cdot (\alpha_f \rho_f \mathbf{u}_f) = 0
$$

$$
\frac{\partial}{\partial t} (\alpha_f \rho_f \mathbf{u}_f) + \nabla \cdot (\alpha_f \rho_f \mathbf{u}_f \mathbf{u}_f) = \nabla \cdot \boldsymbol{\tau} + \alpha_f \rho_f \mathbf{g} + \mathcal{F}_{\text{inter}}
$$

Lagrangian particle tracking (Newton's 2nd law)

$$
\frac{d\mathbf{x}_p^{(i)}}{dt} = \mathbf{u}_p^{(i)}
$$

$$
m_p \frac{d\mathbf{u}_p^{(i)}}{dt} = \mathbf{F}_{\text{inter}}^{(i)} + \mathbf{F}_{\text{col}}^{(i)} + m_p \mathbf{g}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Θ

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) Settling Behavior Settling Behavior [Next steps](#page-46-0)

 2990 DE 11

An Euler-Lagrange approach

Simulations solved using NGA^1 :

- Finite volume DNS/LES code
- Conservation of mass and momentum

$$
\frac{\partial}{\partial t} (\alpha_f \rho_f) + \nabla \cdot (\alpha_f \rho_f \mathbf{u}_f) = 0
$$

∂ $\frac{\partial}{\partial t} (\alpha_f \rho_f \mathbf{u}_f) + \nabla \cdot (\alpha_f \rho_f \mathbf{u}_f \mathbf{u}_f) = \nabla \cdot \boldsymbol{\tau} + \alpha_f \rho_f \mathbf{g} + \mathcal{F}_{\text{inter}}$

Teacher Lagrangian particle tracking (Newton's 2nd law)

$$
\frac{d\mathbf{x}_p^{(i)}}{dt} = \mathbf{u}_p^{(i)}
$$

$$
m_p \frac{d\mathbf{u}_p^{(i)}}{dt} = \mathbf{F}_{\text{inter}}^{(i)} + \mathbf{F}_{\text{col}}^{(i)} + m_p \mathbf{g}
$$

Soft sphere collisional model

 1 Desjardins et. al (2014)

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ NETL Multiphase Flow Workshop | August 13, 2024 | 3

Interphase exchange employs a two-step filtering approach

Volume fraction:

$\alpha_f = 1 - \sum^{N_p}$ $i=1$ $\mathcal{G}\left(|\mathbf{x}-\mathbf{x}_{\boldsymbol{\rho}}^{(i)}\right) V_{\boldsymbol{\rho}}$

Momentum exchange

- 1. Initial conditions: $u_f = 0$ and $\mathbf{u}_p = 0$, particles randomly distributed
- 2. Boundary conditions: Triply periodic

physical parameters ρ_p 2500 [kg/m³] ρ_f 0.50 [kg/m³] μ_f 1.85×10⁻⁵ $[kg/(m s)]$ $(-0.02, 0, 0)$ $[m/s^2]$

 2990

Þ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

NETL Multiphase Flow Workshop | August 13, 2024 | 6

 $\mathbf{\Theta}$

We also consider monodisperse 'sister' configurations, A_0 , with $d_p = \exp\left(\mu + \frac{\sigma^2}{2}\right)$ $\left(\frac{r^2}{2}\right) = 1.72$ at $\langle \alpha_{\nu} \rangle = (0.01, 0.10)$ $N_p = (12\,790, 127\,898)$

We also consider *mono*disperse 'sister' configurations, B_0 , with $d_p = \exp\left(\mu + \frac{\sigma^2}{2}\right)$ $\left(\frac{\sigma^2}{2}\right) = 0.64$ at $\langle \alpha_p \rangle = (0.01, 0.10)$ $N_p = (251 876, 2 518 757)$ $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ Þ

Configurations under study

Random close packing efficiency² is a useful point of reference. This quantity tends to increase with polydispersity.

NETL Multiphase Flow Workshop | August 13, 2024 | 7

 u_t/V_c

 3.0 mm

 $\overline{6.71}$

 \leftarrow m \rightarrow 4 桐 \rightarrow Ω

 $u_f/\mathcal{V}_{0,10}$

 $\overline{0.83}$ $0.\overline{0}$

 0.23 mm

 $0.\overline{0}$

 u_f/V_o

 3.0 mm

 $\overline{2.92}$ $0.\overline{0}$ u_f/V_a

 0.23 mm

 $\overline{2.29}$ 0.0

Polydisperse clustering behavior

First, we consider **global** clustering parameters, such as the variance of volume fraction, $\sqrt{\langle\alpha_{\pmb p}^{\prime 2}\rangle}/\langle\alpha_{\pmb p}\rangle$.

Typically, mass loading $(\varphi = (\langle \alpha_p \rangle \rho_p) / (\langle \alpha_f \rangle \rho_f))$ is used as a predictor of clustering.

NETL Multiphase Flow Workshop | August 13, 2024 | 9

KEL KALET KEL KEL KAR

Polydisperse clustering behavior

First, we consider **global** clustering parameters, such as the variance of volume fraction, $\sqrt{\langle\alpha_{\pmb p}^{\prime 2}\rangle}/\langle\alpha_{\pmb p}\rangle$.

Typically, mass loading $(\varphi = (\langle \alpha_p \rangle \rho_p) / (\langle \alpha_f \rangle \rho_f))$ is used as a predictor of clustering.

We find that the degree of clustering varies widely for equivalent mass loading, especially for polydisperse assemblies.

Polydisperse clustering behavior

First, we consider **global** clustering parameters, such as the variance of volume fraction, $\sqrt{\langle\alpha_{\pmb p}^{\prime 2}\rangle}/\langle\alpha_{\pmb p}\rangle$.

Typically, mass loading $(\varphi = (\langle \alpha_p \rangle \rho_p) / (\langle \alpha_f \rangle \rho_f))$ is used as a predictor of clustering.

We find that the degree of clustering varies widely for equivalent mass loading, especially for polydisperse assemblies.

A more nuanced metric than mass loading is neede[d!](#page-16-0)

Polydisperse clustering behavior

We propose a new metric to predict degree of clustering, termed 'surface loading', and defined as:

$$
\mathcal{S} = \left(\frac{1}{\langle \alpha_f \rangle A_{\text{cross}}}\right) \left(\frac{\rho_p}{\rho_f}\right) \frac{\pi}{4} \frac{1}{N_p} \sum_{i=1}^{N_p} \left(d_p^{(i)}\right)^2
$$

- \mathbb{R} Very small S represents a very dilute suspension of very fine particles.
- \mathbb{R} Very large S represents a very dense suspension of larger particles.
- **W** Variance on volume fraction should asymptotically approach 0 for $S \to 0$ and $S \rightarrow \infty$

 \rightarrow \rightarrow \equiv \rightarrow

Polydisperse clustering behavior

We propose a new metric to predict degree of clustering, termed 'surface loading', and defined as: $\ddot{}$

$$
\mathcal{S} = \left(\frac{1}{\langle \alpha_f \rangle A_{\text{cross}}}\right) \left(\frac{\rho_p}{\rho_f}\right) \frac{\pi}{4} \frac{1}{N_p} \sum_{i=1}^{N_p} \left(d_p^{(i)}\right)^2
$$

We propose a model relating $\sqrt{\langle\alpha'^2_p\rangle}/\langle\alpha_p\rangle$ to ${\cal S}$:

$$
\frac{\sqrt{\langle \alpha_\rho'^2 \rangle}}{\langle \alpha_\rho \rangle} = \frac{1}{A \, \mathcal{S}} \exp \left(\frac{-(\ln{(\mathcal{S}) - \mathcal{B})^2}}{\mathcal{C}} \right)
$$

with the coefficients, A , B and C :

 $A = -8.2\langle \alpha_{p} \rangle + 0.9$ $B = 76.0\langle \alpha_{p} \rangle - 0.8$ $C = 164.0\langle \alpha_{p} \rangle - 0.9.$ **≮ロト (何) (ミ) (ミ)** Þ

NETL Multiphase Flow Workshop | August 13, 2024 | 9

 QQ

Let's take a more nuanced **look at clustering behavior.**

 $2Q$

Polydisperse clustering behavior at $\langle \alpha_p \rangle = 0.10$

Dist. A_0 Dist. A Dist. B_0 Dist. B

- **Polydisperse** configurations exhibit denser cluster centers.
- **Cluster boundaries are** smoother for monodisperse configurations.
- **Dist.** B and B_0 achieve exhibit denser clustered regions than Dist. A and A_0 .

 \leftarrow \Box . \rightarrow

 0.5

 θ

 -1

 $\overline{0}$

 $\sqrt{3}$

 $\overline{4}$

 $\rm 5$

 $\,2$

 $(\alpha_p - \langle \alpha_p \rangle) / \langle \alpha_p \rangle$

 $\mathbf{1}$

 0.5

 $\mathbf{0}$

 -1

 $\mathbf{0}$

 $\sqrt{2}$

 $(\alpha_p - \langle \alpha_p \rangle) / \langle \alpha_p \rangle$

 $\sqrt{3}$

 $\bf{0}$

 $\overline{4}$

 $1.5\,$

 $\rm 5$

2.25

 3.0

 $1.5\,$

 $\bf{0}$

2.25

 3.0

 $\frac{\alpha_p}{\langle \alpha_p \rangle}$

 299

Þ

are log normal.

At hi[g](#page-25-0)her $\langle \alpha_p \rangle$ $\langle \alpha_p \rangle$, b[o](#page-27-0)th [m](#page-26-0)onodisperse and polydisperse are log normal **REF**

 QQ

- Solid lines represent the full domain distribution
- Shaded regions correspond to particles belonging to:
	- 1. dilute, unclustered regions
	- 2. loosely clustered regions
	- 3. moderately clustered regions
	- 4. densely clustered regions

 \leftarrow

4 重 NETL Multiphase Flow Workshop | August 13, 2024 | 13

 \rightarrow \rightarrow \equiv

Þ

 QQ

For the dilute configurations:

- Unclustered regions include smaller particles (note: $d_p^{(i)} \leq d_{3,0}$).
- \bullet Moderately sized particles dominate the loosely and moderately clustered regions .
- **CEPT** The largest particles can only be found in the most densely clustered regions.
- This suggests that it is the Œ largest particles that generate clu[ste](#page-27-0)[rs](#page-29-0)[.](#page-26-0) ÷. \mathbf{A} and \mathbf{B} 299

NETL Multiphase Flow Workshop | August 13, 2024 | 13

For the denser configurations:

- Unclustered regions exclude the largest particles.
- The moderately clustered regions begin to include larger particles
- Œ The densest regions of clusters have greater proportions of large compared with small particles
- **CETTE** Denser suspensions have more blended cluster structures.

 $A \oplus A \times A \oplus A \times A \oplus A$ NETL Multiphase Flow Workshop | August 13, 2024 | 13

∍

 QQ

How does clustering behavior impact settling behavior?

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) Settling Behavior Settling Behavior [Next steps](#page-46-0) Traditional methods are not very predictive

Traditionally, the parameter $\mathcal{D}=\sqrt{\langle\alpha^{'2}_\bm{\rho}\rangle}/\langle\alpha_\bm{\rho}\rangle$ has been used to both quantify degree of clustering as well as settling behavior.

 \blacksquare The use of D is not directly useful for predicting mean settling velocity.

Recall that we introduced a surface loading S to predict degree of clustering, rather than mass loading.

റെ ഭ

Traditional methods are not very predictive

Traditionally, the parameter $\mathcal{D}=\sqrt{\langle\alpha^{'2}_\bm{\rho}\rangle}/\langle\alpha_\bm{\rho}\rangle$ has been used to both quantify degree of clustering as well as settling behavior.

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) Settling Behavior Settling Behavior [Next steps](#page-46-0)

Traditional methods are not very predictive

Traditionally, the parameter $\mathcal{D}=\sqrt{\langle\alpha^{'2}_\bm{\rho}\rangle}/\langle\alpha_\bm{\rho}\rangle$ has been used to both quantify degree of clustering as well as settling behavior.

The model connecting $\langle u_p \rangle$ to S is:

$$
\frac{\langle u_p \rangle}{\mathcal{V}_0} = \frac{2.5}{\left(\mathcal{BS}\sqrt{2\pi} \right)} \exp \left(-\frac{(\ln(\mathcal{S}) - \mathcal{A})^2}{2\mathcal{B}^2} \right)
$$

where $A = 0.15$ and $B = 0.8$

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) Settling Behavior Settling Behavior [Next steps](#page-46-0) A more nuanced look at settling

How does settling behavior change depending on local volume fraction?

⊕

CEPT Particles in the most dilute region have smaller velocities. This is more pronounced in the dilute cases.

CETTE As local volume fraction increases, particles attain higher velocities.

NETL Multiphase Flow Workshop | August 13, 2024 | 15

 $\leftarrow \exists \rightarrow \rightarrow \exists$

∍

 QQ

How does cross-stream velocity change depending on local volume fraction?

 $\mathbf{\Theta}$

- **Te** Particles in the most dilute region have wider spread velocities, indicating higher granular temperature.
- **CETTE** As local volume fraction increases, particles attain velocities closer to null.

画 NETL Multiphase Flow Workshop | August 13, 2024 | 16

 \rightarrow \rightarrow \equiv

÷

NETL Multiphase Flow Workshop | August 13, 2024 | 17

NETL Multiphase Flow Workshop | August 13, 2024 | 17

We propose a **new model** for C_D to improve the prediction for settling velocity.

 $\mathbf{\Theta}$

NETL Multiphase Flow Workshop | August 13, 2024 | 18

э

 QQ

[Context](#page-1-0) [Methodology](#page-6-0) [Clustering Behavior](#page-14-0) [Settling Behavior](#page-30-0) [Next steps](#page-46-0)

An improved modeling for settling velocity

We propose a **new model** for C_D to improve the prediction for settling velocity.

We propose a **new model** for C_D to improve the prediction for settling velocity.

What does each of these terms do?

IC Term 1 is a modification of the model of Gidaspow (1994).

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

∍

 QQ

We propose a **new model** for C_D to improve the prediction for settling velocity.

What does each of these terms do?

- **REF** Term 1 is a modification of the model of Gidaspow (1994).
- Term 2 accounts for reduced drag felt by larger particles that are embedded in clusters.

 $A\equiv 0 \quad A\equiv 0$

We propose a **new model** for C_D to improve the prediction for settling velocity.

⊕

What does each of these terms do?

- **REF** Term 1 is a modification of the model of Gidaspow (1994).
- **Term 2** accounts for reduced drag felt by larger particles that are embedded in clusters.
- Term 3 adjusts for the increased drag felt by larger particles due to clustering.

NETL Multiphase Flow Workshop | August 13, 2024 | 18

 $A\equiv 0 \quad A\equiv 0$

We propose a **new model** for C_D to improve the prediction for settling velocity.

 $\mathbf{\Theta}$

What does each of these terms do?

- **REF** Term 1 is a modification of the model of Gidaspow (1994).
- **Term 2** accounts for reduced drag felt by larger particles that are embedded in clusters.
- Term 3 adjusts for the increased drag felt by larger particles due to clustering.
- $Term 4$ introduces stochasticity in the model through a Weiner process, W.

 $\mathcal{A} \oplus \mathcal{B}$) and $\mathcal{B} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$ NETL Multiphase Flow Workshop | August 13, 2024 | 18

NETL Multiphase Flow Workshop | August 13, 2024 | 19

NETL Multiphase Flow Workshop | August 13, 2024 | 19

In this work, we made the following observations

Large particles are most likely to generate clusters

Cluster composition changes depending on polydispersity properties

and we made the following contributions

- The use of 'surface loading', S for predicting degree of heterogeneity and mean settling velocity for mono- and polydisperse assemblies.
- An improved model for C_D that captures enhanced settling for small particles and hindered settling for large particles.

Thank you!

We acknowledge the support provided by NSF (2346972), NASA MSGC (80NSSC20M0124) and a NERC Independent Research Fellowship (NE/V014242/1).

NETL Multiphase Flow Workshop | August 13, 2024 | 20

 $A \oplus B$ is a density of $B \oplus B$

 QQ