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Introduction

➢ Circulating fluidized beds (CFB) are one of the
prominent gas-solid reactors used in the
industry

➢ Contact between the fluid and particles
promotes heat and mass transfer

➢ Efficiency of CFB reactors heavily influenced by
riser hydrodynamics

➢ Focus on developing scalable coarse-grain
DEM models for simulation of risers with
polydisperse Geldart group-A particles

Schematic representation of CFB1

1Shaffer, F, et al., Powder Technology (2013)
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CFD-DEM gas-phase equations

➢ Euler–Lagrange (CFD-DEM) approach adopted for many industrial applications

➢ Volume-filtered Navier–Stokes equations:

∂

∂t
(εfuf ) +∇ · (εfρfuf ) = 0

∂

∂t
(εfρfuf ) +∇ · (εfρfuf ⊗ uf ) = ∇ · (τ −Ru) + εfρfg + F inter

➢ Main unclosed terms:
– Pseudo-turbulent stress tensor, Ru

– Interphase momentum exchange, F inter
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Modeling pseudo-turbulent Reynolds stress

➢ Subgrid-scale model accounting for
pseudo-turbulence (Mehrabadi, et al.2)

➢ Pseudo-turbulent kinetic energy:

kf =
1

2
⟨u′′

f · u′′
f ⟩

≈ Ef

î
2εp + 2.5εp (1− εp)

3
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Ä
−εp Re

1/2
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äó
➢ Pseudo-turbulent stress tensor:

Ru = ⟨u′′
f ⊗ u′′

f ⟩ ≈ 2kf

Å
b+

1

3
I

ã
Pseudo–turbulence in particle-laden flows3

2Mehrabadi, et al. Journal of Fluid Mechanics, 2015
3Lattanzi, et al. Journal of Fluid Mechanics, 2022
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Particle equation of motion

➢ Particle transport equation in
traditional CFD-DEM:

dup

dt
= f inter

p + f col
p + g

➢ Major drawback: requires tracking
each individual particle

➢ Alternatively, npp particles lumped into ‘parcels’

➢ Common approaches:

➤ CG-DEM
→ Collisions modeled using soft-sphere approach with modified restitution coefficient

→ Assume uniform particle properties within parcels

➤ MP-PIC
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Particle equation of motion
➢ Particle transport equation in

traditional CFD-DEM:

dup

dt
= f inter

p + f col
p + g

➢ Major drawback: requires tracking
each individual particle

➢ Alternatively, npp particles lumped into ‘parcels’

➢ Common approaches:

➤ CG-DEM
➤ MP-PIC

→ Collisions modeled using a stochastic approach based on solid stress

→ Assume uniform particle properties within parcels

→ Does not converge to deterministic equations in the limit npp → 1
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Objective of current work

To develop a rigorous coarse-grain CFD-DEM framework that converges to underlying
deterministic equations in the limit npp = 1, with closures that account for variations

within the parcel
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Coarse-grain modeling using local particle filtering

➢ Particles are lumped into parcels with
npp particles per parcel

➢ Parcel properties determined via local
averaging using a particle-based filter

➢ Filtering kernel, W , defined for parcel
i:

npp∑
j=1

V(j)
p W (|x̂(i)

p − x(j)
p |) = 1

Box filter over a parcel

➢ Notation:
– j → particle index
– Vp → volume of the particle
– xp → particle position
– W → kernel function
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Parcel properties obtained using local particle filtering

➢ Position and velocity of parcel i:

x̂(i)
p =

npp∑
j=1

x(j)
p V(j)

p Wij

dx̂
(i)
p

dt
= û(i)

p =

npp∑
j=1

u(j)
p V(j)

p Wij

➢ Velocity distribution within parcels is
characterized by a mean velocity and
granular temperature

θp =
1

3
◊�u′′
p · u′′

p

PDF of velocity of particles in a parcel

µ = û(i)
p σ =

√
3θp
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Parcel equation of motion

Parcel transport equation:
dûp

dt
= f̂ inter

p + f̂ col
p + g

➢ Collisions modeled as a mass-spring-dashpot system
using soft-sphere approach

➢ Coefficient of restitution modified to account for
the dissipation of granular energy5

ln eCG

ln e
=

√
npp

√
1− (ln e)2

(ln e)2+π2√
1− npp(ln e)2

(ln e)2+π2

➢ Upper limit on npp imposed (e = 0.8 ⇒ npp ≤ 199)

5Benyahia, S. and Galvin, J.E., Industrial & Engineering Chemistry Research (2010)
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Filtered drag force acting on parcels
➢ Filtered drag force:

f̂
(i)
drag =

¤�
(β[u

(i)
f − u

(i)
p ]) =

npp∑
j=1

β(ε
(j)
f ,Re(j)p )[u

(j)
f − u(j)

p ]V(j)
p Wij

= β(ε
(i)
f ,Re

(i)
CG)[ũ

(i)
f − û(i)

p ] (1 +H)

➢ Eulerian-based filtering:

ũf = εfuf/εf

εf (x) =

∫
Ω
G(y)εf (x−y)dy

Filtered velocity field
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Drag correction factor

➢ Drag correction factor:

H =

¤�
β[u

(i)
f − u

(i)
p ]

β(ε
(i)
f ,Re

(i)
CG)[ũ

(i)
f − û

(i)
p ]

− 1

– H = 0 : drag obtained using resolved quantities require no correction
– H > 0 : drag overestimated when computed using resolved quantities
– H < 0 : drag underestimated when computed using resolved quantities

➢ Similar closure appears in filtered two-fluid method5,6,7

5Igci, Y, et al., Industrial & Engineering Chemistry Research (2008)
6Parmentier, J, et al., AIChE Journal (2012)
7Milioli, C, et al., AIChE Journal (2013)
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Modeling drag correction factor

➢ Simulations of “cluster-induced turbulent” flow
in a triply periodic domain with monodisperse
and polydisperse distribution of Geldart
group-A particles

– Particle mean diameter : 75 µm

– Particle density : 2250 kg/m3

– Particle volume fraction : 0.02

– No. of particles ∼ 2.1M
– Domain : 960dp × 240dp × 240dp

– dx = dy = dz = 3dp
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Modeling drag correction factor

➢ Simulations of “cluster-induced turbulent” flow
in a triply periodic domain with Geldart
group-A particles

➢ Efficient, embarrassingly parallel, detection of
particles within parcels using KDTree algorithm

Zoomed-in view of particles in flow
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Modeling drag correction factor

➢ Simulations of “cluster-induced turbulent” flow
in a triply periodic domain with Geldart
group-A particles

➢ Efficient, embarrassingly parallel, detection of
particles within parcels using KDTree algorithm

➢ Filtered quantities obtained using a
volume-weighted box filter

û(i)
p =

npp∑
j=1

u(j)
p V(j)

p Wij =

∑npp

j=1 u
(j)
p V(j)

p∑npp

j=1 V
(j)
p

Zoomed-in view of particles in flow
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Variation of drag correction factor with monodisperse particles
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Parcels with polydisperse particles

➢ Solid mass and volume are conserved within each parcel

mCG =

npp∑
j=1

m(j)
p , VCG =

npp∑
j=1

V(j)
p

➢ Equivalent diameter of the particles in the parcels computed using volume
constraint

dp,eff =

Ç∑npp

j=1 d
3
p

npp

å1/3

➢ Reynolds number of parcels computed using the effective diameter

ReCG =
ρf |ũf − ûp|dp,eff

ν
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Variation of drag correction factor with polydisperse particles
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Velocity variation within parcels
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Conclusion

Summary

➢ A rigorous formulation of a scalable filtered coarse-grain CFD-DEM is presented

➢ Unclosed sub-filter terms arise and require modeling

➢ Sub-filter drag force quantified with simulations of “cluster induced turbulent” flows

Future work

➢ Symbolic regression will be employed to obtain closed-form algebraic models

➢ Formulation will be extended to capture high-order particle statistics within parcels
like granular temperature, in addition to exchanging particles between parcels

➢ Borrow ideas from moment methods for the formulation
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