

Effect of instantaneous local solid volume fraction on unsteady drag forces in freely evolving particle suspensions

Ze Cao¹, <u>Danesh K. Tafti</u>²

1School of Infrastructure Engineering Dalian University of Technology 2Mechanical Engineering Department Virginia Polytechnic Institute and State University

Outline

- Motivation and Objectives
- Particle Resolved Simulations
- \triangleright Results
- **≻Conclusions**

Motivation

Particle Resolved Simulations

• **Study adopts Immersed Boundary Method (IBM) to perform Particle Resolved Simulations (PRS) for freely evolving spherical particle suspensions**

 $\bullet\,$ Simulations are performed within domain of $5d_{p}$ \times **Buffer contact distribution** $\mathbf{v}_1 \cdot \mathbf{v}_2 \cdot \mathbf{v}_3 = \mathbf{v}_1 \cdot \mathbf{v}_2 \cdot \mathbf{v}_3$ $\mathbf{5}d_p \times \mathbf{5}d_p$ with d_p being the particle diameter

- **The simulations cover:**
- Particle-to-fluid density ratios $\frac{\rho_S}{\rho_f}$ of 2, 10
	- **and 100;**
- **Solid volume fraction () between 0.1 and 0.4;**
- **Reynolds number () from 10 to 300.**

Cao Z, Tafti DK. "Alternate method for resolving particle collisions in PRS of freely evolving particle suspensions using IBM". *International Journal of Multiphase Flow*. 2024 May 10:104862. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104862

Particle Resolved Simulation Results

- **Simulated time-development of individual particle drag forces**
- • Time development of individual particle drag forces in two suspensions

• **The PRS-derived suspension-mean drag forces are compared with Tavanashad et al. (2021) drag correlation proposed for freely evolving sphere suspensions**

Author Drag correlation

Definition of local solid volume fraction (φ_{loc} **)**

- Calculate the volume of Voronoi tessellation for each particle in the suspension at each instant, defined as V_{vor}
- The local solid volume fraction is defined as:

$$
\varphi_v = \frac{V_p}{V_{vor}} = \varphi_{loc}
$$

• With V_p being the particle volume

Snapshot of the Voronoi tessellations in suspensions of particles (*adapted from Voro++, n.d.*).

• **Periodic boundary conditions is accounted for in calculating**

Effect of suspension heterogeneity on drag force

- Denoting instantaneous individual particle drag force as $\boldsymbol{F}_{d,i,t},$ i is the particle ID in the **suspension and is the time instant**
- **Suspension-averaged instantaneous drag force can be defined as:**
- \bullet \bm{F} $r_{d,t} =$ $\mathbf{1}$ $\frac{1}{N}\sum_{i=1}^{N}F_{d,i,t} \; \longrightarrow \;$ $\;$ $\;$ $\;$ is the total number of particles in the suspension
- Quantify dispersion of instantaneous $\bm{\varphi}_{loc}$ distribution among all particles in the suspension using standard deviation $(\sigma_{\varphi_v,t})$

- Pearson correlation coefficient between $\it F$ $F_{d,t}$ and $\sigma_{\varphi_v,t}$ at . different conditions
- Significant positive correlation exists at $Re \geq 50, \varphi \geq 0.2$

Effect of suspension heterogeneity on drag force......more

• PDF of φ_v at t_1 , t_2 , t_3 and t_4 are extracted together with particle drag forces as function of φ _{*n*}.

• Particles with $\varphi_{\nu} > \varphi$ contribute more than particles at $\varphi_{\nu} < \varphi$ to increase overall drag force

Can we use existing drag force correlations to include effect of φ_{loc} ?

• As $\varphi_v > \varphi$, the increase in particle drag becomes less prominent and in most cases levels off

Use of modified solid fraction with Tavanashad drag force correlation

• With Reynolds number defined as:

$$
Re = \frac{\rho_{ref}^* d_p^* (u_f^* - u_p^*) \varphi}{\mu_{ref}^*}
$$

- \circ Based on our observations, define modified local solid fraction, $\pmb{\varphi}_1$:
	- $\left\{ \begin{matrix} 1 \\ 1 \end{matrix} \right.$ φ_1 $_{1}=\varphi$ φ_{ν} , $\varphi_{\nu} \leq \varphi$ φ_1 $_1=\varphi$, $\pmb{\varphi}_v > \pmb{\varphi}$

Comparison of use of $\pmb{\varphi}_1$ versus $\pmb{\varphi}$

 \blacksquare Mean Absolute Percentage Error (MAPE) defined as:

•
$$
\text{MAPE} = \frac{1}{N \cdot M} \sum_{t=1}^{M} \sum_{i=1}^{N} \left| \frac{F_{d,i,t}^{PRS} - F_{d,i,t}^{corr}}{F_{d,i,t}^{PRS}} \right| \times 100\%
$$

•• N and M are total number of particles in the suspension and number of sampled time instances, respectively

 $\bullet\,$ The table below lists the decrease in MAPE when $\,$ implementing $\pmb{\varphi}_1$ compared to $\pmb{\varphi}$ in Tavanashad's drag force correlation

• The increase in accuracy becomes prominent when $Re \geq$ 50, $\varphi \geq$ 0.3, similar as the conditions when $\bar{F}_{d,t}$ and $\sigma_{\varphi_v,t}$ exhibit significant positive correlation

Drag force prediction using φ_1 **versus** φ **in Tavanashad correlation**

- The four left figures compare averaged drag forces within φ_v bins, derived from $\,$ Tavanashad's drag correlation using φ_1 and φ , respectively, with the PRS data.
- Except for the case at $\frac{\rho_s}{\rho_f}$ =2, φ =0.1, $Re=10$, the variation in particle drag force with respect to φ_v is better $\;$ captured when using φ_1 compared to φ

Drag force prediction using φ_1 **versus** φ **in Huang correlation**

• Huang et al. (2018) proposed a drag correlation for mobile particle suspensions, utilizing suspension averaged granular temperature (\bar{T} $T^\ast)$ to quantify the $\overline{ }$ effect of particle mobility on drag force. \bar{T} T^{\ast} is defined as:

•
$$
\bar{T}^* = \frac{1}{T_n} \sum_{t=1}^{T_n} \left(\frac{1}{3N} \sum_{k=x,y,z} \sum_{i=1}^N \left(u_{p_{i,k}^*}(t) - \widehat{u}_{p_k}^*(t) \right)^2 \right)
$$

• Where $u_{p_{l,k}^{\ast}}(t)$ is the instantaneous particle velocity along k -direction. A granular temperature based Reynolds number is derived as:

•
$$
Re_T = \frac{\rho_{ref}^* \sqrt{\overline{T}^*} d_p^*}{\mu_{ref}^*}
$$

• And Huang's drag correlation:

•
$$
\overline{F}_d = \overline{F}_{stat} + 4.01 \frac{(1.93\varphi^2 + 0.25\varphi + 0.66)}{(1 - \varphi)^{0.1}} \cdot \frac{Re_T^{1.49}}{Re^{0.8} + 100}
$$

• Table on the left illustrates the decrease in MAPEwhen implementing $\pmb{\varphi}_1$ compared to $\pmb{\varphi}$ in Huang's $\;$ drag force correlation

• The increase in accuracy becomes prominent when $Re \geq$ 50, $\varphi \geq 0.3$, similar as the condition when implementing Tavanashad's drag correlation

Drag force prediction using φ_1 **versus** φ **in Huang's correlation**

• Comparison of averaged drag forces within φ_v bins, derived from Huang's drag correlation using $\pmb{\varphi}_1$ and $\pmb{\varphi}$, respectively, with the PRS data, are plotted

Summary and Conclusions

- Using particle resolved simulations of moving suspensions defined a local solid fraction for individual particles in the suspension as $\pmb{\varphi}_v$ based on Voronoi tessellation
- Instantaneous variation of suspension averaged drag force F_c $F_{d,t}$ is observed to be positively correlated with the \bar{c} variation of $\pmb{\varphi}_v$ measured by its standard deviation $(\sigma_{\pmb{\varphi}_v})$
- $\bullet\,$ the dependency of individual particle drag force on φ_v when $\varphi_v \leq \varphi$ resembles the correlation between φ suspension-averaged drag force and φ
- •Implementing $\varphi_1(\begin{cases} \varphi_1 = \varphi_v, & \varphi_v \leq \varphi \\ \varphi_1 = \varphi, & \varphi_v > \varphi \end{cases})$ in the drag correlations significantly improves drag prediction accuracy compared to using φ .

