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Motivation

• Computational Fluid Dynamics prediction of transport phenomena is computationally 
expensive

• Reduced-order modeling is an appealing alternative to full-order modeling

• Proper orthogonal decomposition can reduce computational time by 10,000 times or more, 
but it is not trivial to implement

• Machine learning is promising, but reacting two-phase flows are much more challenging than 
face recognition
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Elizabeth Krath, Forrest Carpenter, and Paul Cizmas. “Prediction of unsteady flows in turbomachinery cascades using proper orthogonal decomposition” in: 

Physics of Fluids 36.3 (Mar. 2024)
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Proper Orthogonal Decomposition (POD) Method

• POD is also known as Singular Value Decomposition, Karhunen-Loeve Decomposition, Principal 
Components Analysis, and Singular Systems Analysis

• Provides optimal basis for modal decomposition of a data set

• Extracts key spatial features from physical systems with spatial and temporal characteristics

• Reduces a large set of governing PDEs to a much smaller set of ODEs
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POD Method

•  Extracts:

‣ time-independent orthonormal basis functions  

‣ time-dependent orthonormal amplitude coefficients  such that the reconstruction 

‣

‣ is optimal in the sense that the average least square truncation error

‣

‣ is a minimum for any given number  of basis functions over all possible sets of orthogonal 
functions

φk(x)
αk(ti)

u(x, ti) =
M

∑
k=1

αk(ti)φk(x), i = 1,…, M

ϵm = ⟨∥u(x, ti) −
m

∑
k=1

αk(ti)φk(x)∥2⟩ (1)

m ≤ M
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POD Method

• Optimal property (1) reduces to

•                                                                      

 are eigenfunctions of integral equation (2), whose kernel is the averaged autocorrelation 
function

• For a finite-dimensional case, (3) replaced by tensor product matrix

•

∫D
⟨u(x) u*(y)⟩φ(y)dy = λφ(x) (2)

φk

⟨u(x) u*(y)⟩ ≡ R(x, y) (3)

R =
∑M

i=1 u(x, ti) uT(y, ti)

M
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POD Steps

• Generate database using full-order model

• Assembly autocorrelation matrix and extract eigenmodes

• Substitute approximation in governing equations and perform Galerkin projection

• Solve ODE system to obtain time coefficients and reconstruct solution
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OTHER POD-Like 
Reduced-Order Models

• Bi-orthogonal Decomposition (Audry, 1991)

• Balanced Proper Orthogonal Decomposition (Rowley, 2005)

• Dynamic Mode Decomposition (Schmid, 2010)

• Dynamic Proper Orthogonal Decomposition (Freno & Cizmas, 2015)

• Constraint Proper Orthogonal Decomposition (Cizmas et al., 2017)

• Zeta Proper Orthogonal Decomposition (Cizmas et al., JCP 2021, PoF 2024)
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Void Fraction, ϵg
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Full-order model Reduced-order model



Computational Time - Zeta-POD
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CPU runtime: FOM vs ROM

Elizabeth Krath, Forrest Carpenter, and Paul Cizmas. “Prediction of unsteady flows in turbomachinery cascades using proper orthogonal decomposition” in: 

Physics of Fluids 36.3 (Mar. 2024)



Machine Learning (ML)

• Machine Learning = automated data analysis during which computer programs (or models) are 
learned from data

• Model (or computer program) describes relationship between variables (or data) and 
properties of interest, e.g., void fraction, solids particle velocity 

• Model is learned using training data by using a learning algorithm that automatically adjust 
parameters of model to agree with data

• Cornerstones of machine learning: (1) data, (2) model, and (3) learning algorithm
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Approach

• POD basis functions  are known; only unknowns are time coefficients 

• Apply machine learning to find time coefficients  of POD approximation

• Use snapshots as training data for 

φi(x) αi(t)

αi(t)

αi(t)
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Machine Learning Methodology
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• Use of POD basis functions ensures time coefficient data is optimal

• Learn instantaneous time rates of change of POD time coefficients

• ML can identify latent ODE that governs POD time coefficients

• Usually achieved using recurrent neural networks (RNN) or residual neural networks 
(ResNet)

• Instead use neural ODE (NODE) machine learning algorithm



Neural Ordinary Differential Equations
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• RNN and ResNet learn Euler time integration

• NODE network is integrated using time integration scheme of choice

• Backpropagation is possible for many integration schemes

• Allows model to learn under high-order and/or adaptive time integration

• NODE networks can outperform similarly sized RNN and ResNet by several orders of 
magnitude



Tasks

• Generate training data

• Assemble autocorrelation matrix , calculate POD basis functions 

• Use machine learning to determine time coefficients 

• Reconstruct solution  for on- and off-reference conditions

• Compare machine learning results vs. POD results

R φi(x)

αi(t)

u(x, t)
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Machine Learning Results

• Flow through nozzle


• Compressible gas-only flow in a reactor


• Gas-solids dynamics in a fluidized bed



Flow Through Nozzle



Nozzle with Varying Back Pressure
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Case Ampl.
1 0 On
2 0.1 On
3 0.2 On
4 0.3 On
5 0.4 On
6 0.5 On
7 0.25 Off
8 0.45 Off



Energy Spectrum of Energy
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Energy Modes
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Off-Reference Case 7 
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Off-Reference  
Case 7 



Compressible Gas-Only Flow



Gas Only - V Velocity
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Gas only

Case V_jet
1 11.4 On
2 12.0 On
3 12.6 On
4 13.2 On
5 13.9 On
6 13.0 Off

T. Yuan, P. Cizmas, T. O’Brien, “A reduced-order model for a bubbling fluidized bed bases on proper orthogonal decomposition,

Computers & Chemical Engineering, 30, 2005.



Gas Only - POD Modes of V Velocity
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ML vs POD, Case 1, 13 seconds
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ML vs POD, Case 2, 13 seconds
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ML vs POD, Case 3, 13 seconds
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ML vs POD, Case 4, 13 seconds
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ML vs POD, Case 5, 13 seconds
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ML vs POD, Case 6, 13 seconds
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Gas-Solids Dynamics in Fluidized 
Bed



Variable Solids Density, RO_s

• Seven values for solids density - nominal density (2.61)

32

Case Density  
Multiplier

1 1 On
2 1.05 On
3 0.95 On
4 1.1 On
5 0.9 On
6 1.025 Off
7 0.975 Off

D. Gidaspow, Multiphase Flow and Fluidization (1994); M. Syamlal, “Higher Order Discretization Methods for the Numerical Simulation of Fluidized Beds”, AIChE Annual

Meeting (1997)  



33

RO_g = 1.1 nominal RO_g = 0.9 nominal

Void Fraction
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Modes

0                                        1                                        2                                        3                                        4                                        

Bubbling Flow Modes
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ML vs POD, Case 1, 1 second
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ML vs POD, Case 2, 1 second
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ML vs POD, Case 3, 1 second
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ML vs POD, Case 4, 1 second
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ML vs POD, Case 5, 1 second
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ML vs POD, Case 6, 1 second
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ML vs POD, Case 7, 1 second
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Conclusions

• ML properly captured flow features of the three cases tested herein
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