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• Variable milled biomass feedstocks can pose 
operational challenges in biorefineries

• Arching, ratholing, surging flow in hoppers
• Clogging/jamming in screw conveyors

• Such disruptions impact refinery production 
and profitability

• From Williams (2016), feedstock flowability 
impacted by:

• Particle morphology
• Moisture content/cohesiveness
• Compressibility
• Bulk density

Feedstock variability

Milled corn stover Switchgrass, Guo (2020)

Pine chips, Xia (2019)
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Vibrational forcing used as a strategy for inducing 
and maintaining particle flow in hoppers

• Hunt, Wassgren et al. found that horizontal and vibrational forcing 
strategies could induce different flow patterns (right)

• Janda et al. observed that the arching distance could be decreased 
to approximately one particle diameter with sufficient forcing

• Such studies have been limited to simple, often uniform particle 
types, little to no data exists for complex milled biomass

Vibrational forcing

Flow patterns under the influence of vertical vibrational forcing (Wassgren et al., 
2002)

Objective: Use DEM to investigate how horizontal and 
vertical vibrations applied to a hopper impact the 
flowability of milled biomass 

  

Flow patterns under the influence of horizontal vibrational 
forcing (Hunt et al., 1999)



BDEM implementation

An open-source GPU-accelerated DEM solver

https://github.com/NREL/BDEM
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BDEM – a biomass DEM solver

BDEM is an open-source massively-parallel DEM solver that specializes in 
biomass handling problems  

– Supports linear spring-dashpot (LSD) and Hertz-Mindlin (HM contact models)

– Includes glued and bonded-sphere models for complex particle shapes

– Particle cohesion captured using liquid bridge and SJKR models 

LSD and HM contact models Bonded sphere model Liquid bridge model
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Parallel implementation

• BDEM is built on top of the AMR library 
AMReX, and supports hybrid CPU/GPU 
parallelization

• The domain is discretized into grids, which 
are assigned to individual MPI ranks/GPUs

• Each grid includes ghost particles to ensure 
collisions between particles in neighboring 
grids are included

• BDEM also support complex moving 
geometries 
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Parallel performance

• Excellent scaling performance on multiple HPC systems on problem sizes > O(100 M particles)
• GPU speedup of 2-4x observed on systems tested



BDEM validation
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• Hopper discharge experiments with 4 mm corn stover 
performed at INL with MC 10-30%

• Hopper opening varied to find arching distance

Hopper discharge experiments

~ 90 mm

Challenge
No-flow behavior observed up until very large 
openings (W ~ 90 mm) - need to recreate 
behavior with BDEM
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4mm whole corn stover

Particle conceptualization

Corn stover particle types
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Simulation setup
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Simulation setup
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Hopper discharge results

γ=0.073 + SJKR γ=0

• Smooth discharge observed when liquid bridges were neglected (even with 
artificially high friction coef.)

• Results indicate that expected no-flow behavior only achieved when both liquid 
bridges and SJKR cohesion models are used simultaneously



Vibrational forcing simulations
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• Wedge hoppers (initially closed) are filled with corn stover 
particles and brought to rest, small and large configurations 
explored

• Hopper exit is opened, and sinusoidal vibrations are 
applied to hopper 
– Horizontal and vertical vibrations are explored

• Dimensionless vibrational acceleration defined as 
– a is the vibration amplitude
– ω is the vibration frequency

• Parameter ranges: 1 ≤ Γ ≤ 4      
– 15 ≤ ω ≤ 400 s-1  
– 0.1 ≤ a ≤ 50 mm

Problem Configuration
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Horizontal vibrations (Γ= 1)

a = 0 (mm), ω = 0 (1/s) 

a = 0.98 (mm), ω = 100 (1/s) 

a = 24.5 (mm), ω = 20 (1/s) 

a = 3.92 (mm), ω = 50 (1/s) 

(a)

(d)(c)

(b) • Discharge times:
– (a): 17.50 s
– (b): 2.10 s
– (c): 6.10 s
– (d): 9.60 s
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Vertical vibrations (Γ= 1)

a = 0 (mm), ω = 0 (1/s) 

a = 0.98 (mm), ω = 100 (1/s) 

a = 24.5 (mm), ω = 20 (1/s) 

a = 3.92 (mm), ω = 50 (1/s) 

(a)

(d)(c)

(b) • Discharge times:
– (a): 17.50 s
– (b): 1.65 s
– (c): 4.65 s
– (d): 9.35 s
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Horizontal vibrations (Γ= 4)

a = 15.68 (mm), ω = 50 (1/s) 

a = 0.245 (mm), ω = 400 (1/s) 

a = 3.92 (mm), ω = 100 (1/s) 

a = 0.98 (mm), ω = 200 (1/s) 

(a)

(d)(c)

(b) • Discharge times:
– (a): 3.70 s
– (b): 3.95 s
– (c): 6.90 s
– (d): 7.85 s
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Vertical vibrations (Γ= 4)

a = 15.68 (mm), ω = 50 (1/s) 

a = 0.245 (mm), ω = 400 (1/s) 

a = 3.92 (mm), ω = 100 (1/s) 

a = 0.98 (mm), ω = 200 (1/s) 

(a)

(d)(c)

(b) • Discharge times:
– (a): 1.80 s
– (b): 3.80 s
– (c): 8.75 s
– (d): 10.25 s
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Horizontal vibration results

• Any vibrational forcing yields 
increased flow rate over base case

• Flow rate primarily function of 
amplitude a
– Frequency ω has a secondary effect

• Local maximum in discharge rate 
observed around larger a values

• Larger vibrations lead to greater 
intermittency 
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Vertical vibration results

• Discharge rate becomes a function of 
a only

• Compared against horizontal 
vibrations, discharge rates larger for 
a given a and ω

• Greater intermittency also observed 
(vs. horizontal) for large amplitudes

• The observed trends were present 
for both the small and large hoppers
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Conclusions

• Development of an open-source high-performance DEM 
solver capable of representing complex particles

• BDEM successfully replicated no-flow behavior with 
complex particle shapes and liquid bridge cohesion

• Simulations demonstrated that discharge rate and flow 
intermittency largely governed by forcing amplitude

• For a given forcing amplitude and frequency, vertical 
vibrations generally induce higher flow rates

• Flow fields did not differ considerably across cases

• Hopper size had little impact suggesting results may hold 
for scaled-up cases
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