MFiX Development Updates

Software Tools and Expertise To Address Multiphase Flow Challenges in Research, Design, and Optimization

Jeff Dietiker

NETL Support Contractor

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Jeff Dietiker^{1,2}

¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

MFiX Suite of Multiphase Computational Fluid Dynamics Modeling Software

Capabilities and Benefits ************************************	3 Decades600+of development historydownloads per month8,800+850registered userscitations per year		
MFiX-TFM (Two-Fluid Model)	 Transport equations for both gas and solids phases Requires closure models 		
MFiX-DEM (Discrete Element Model)	 Uses first principles to account for particle interactions Computationally expensive 		
MFiX-PIC (Multiphase Particle In Cell)	Computationally efficient, tracks parcels Continuum stress model to approximate particle-particle interactio		
MFiX-CGDEM (Coarse Grain DEM)	 Computationally efficient, tracks groups of particles Same contact mechanism as DEM 		
MFiX-SQP (Super Quadric Particle)	 Non-spherical particles, superquadric shapes Contact mechanism more expensive than DEM 		
MFiX-GSP (Glued Sphere Particle)	 Non-spherical particles, glued spheres Same contact mechanism as DEM 		

MFiX Suite of Multiphase CFD Software

Managing the Tradeoff Between Accuracy and Time to Solution

TFM

NATIONAL

TECHNOLOGY LABORATORY

CGDEN

Multiphase Models

Example: 10 MWth Industrial-Scale Circulating Fluidized Bed (CFB) Furnace

Miao Yang et al. (2023) CFD Simulation of Biomass Combustion in an Industrial Circulating Fluidized Bed Furnace, Combustion Science and Technology, 195:14, 3310-3340

- 40 m tall CFB furnace
- 60 tons of sand + biomass
- OpenFoam
- Coarse Grain DEM and PIC

Fine mesh:

• 600K cells

989K sand parcels

• 100K biomass parcels

Refs	Scale	D	Model	subModel	н	T	R
Gu et al. (2020)	12 MWth	3D	E-L	MP-PIC	\checkmark	\checkmark	\checkmark
Kong et al. (2020)	lab-scale	3D	E-L	MP-PIC	\checkmark	\checkmark	\checkmark
Lin et al. (2022)	1 MWth	3D	E-L	MP-PIC	\checkmark	\checkmark	\checkmark
Yang et al. (2020)	0.3 MWth	3D	E-L	MP-PIC	\checkmark	\checkmark	\checkmark
Li and Shen (2021)	lab-scale	3D	E-E	TFM	\checkmark	\checkmark	\checkmark
Cai et al. (2022) Ghadirian, et al.	lab-scale	3D	E-E	TFM	√	~	√
(2019)	lab-scale	3D	E-E	TFM	\checkmark	\checkmark	\checkmark
Wang et al. (2018)	lab-scale	3D	E-L	MP-PIC	\checkmark	\checkmark	\checkmark
Wang et al. (2017)	600 MWth	3D	E-L	DEM	\checkmark	×	×
Luo et al. (2015)	lab-scale	3D	E-L	DEM	\checkmark	×	×
Lee et al. (2022)	550 MWth	3D	E-L	MP-PIC	\checkmark	×	×
Tu and Wang (2018)	lab-scale	3D	E-L	MP-PIC	\checkmark	×	×
Kadyrov, et al. (2019) Yang and Wang	lab-scale	3D	E-L	MP-PIC	√	×	×
(2020) Muhammad et al. (2019)	lab-scale lab-scale	3D 3D	E-L E-L	MP-PIC MP-PIC	√ √	×	××
Ma et al. (2017)	lab-scale	3D	E-L	MP-PIC	\checkmark	×	×
Li et al. (2021)	lab-scale	3D	E-L	MP-PIC	\checkmark	×	×
Liu et al. (2002)	lab-scale	3D	E-E	TFM	\checkmark	×	×
Lu et al. (2018)	lab-scale	2D	E-E	TFM	\checkmark	×	×
Deng et al. (2021)	350 Mw	1D	×	×	\checkmark	\checkmark	\checkmark

H- Hydrodynamic, T- thermo., R- gasification/combustion

Multiphase Models

MFiX Development

NATIONAL ENERGY TECHNOLOGY LABORATORY

4 Releases in EY23 (See <u>mfix.netl.doe.gov</u> for Full Release Note)

- 23.2: Support for Chemkin thermodynamic data
 Chemical species and reaction equation import
- 23.3: Stiff solver for DEM simulations
 - Default Shared Memory and Distributed Memory solvers
 - Keyword control of floating-point exception handling
- 23.4: New adaptive time step option (nice dt)
- 24.1: Glued Sphere Particle model
 - Non-Newtonian viscosity model (Herschel-Bulkley)
 - Mass inlet ramps
- 24.2: New keyframe data workflow
 DEM rigid motion

MFiX Development

23.2 Example

- Screwfeeder
 - Glued sphere DEM
 - Moving STL
 - Keyframe data

Thin Wall Boundary Conditions

Motivation

- Cut cell approach cannot resolve geometric details smaller than cell size
- Internal walls must be at least 2-3 times thicker than cell size
- Not always feasible to refine the mesh

Thin Wall Boundary Conditions

1.0

- Scalar cell meshing
- Test with simple Heat Transfer

NATIONAL ENERGY

TECHNOLOGY LABORATORY

Glued Sphere Model (Non-Spherical Particles)

Irregular Shape of Particles

- Composite spheres
- Intra-particle temperature distribution

Inter-phase convection

Inter-particle conduction

Intra-particle conduction

Time (s)

NATIONAL ENERGY TECHNOLOGY LABORATORY

Chemistry Management

NATIONAL ENERGY TECHNOLOGY LABORATORY

DEM Stiff Solver (10x to 100x Speedup)

- Stiff solver (fractional-step method) was extended to all discrete particle models (DEM, GSP, SQP, CGP, PIC)
- Improves the ability to deal with detailed chemical mechanisms
- Separates chemical reactions from transport phenomena
- Tested with pyrolysis mechanism from Politecnico di Milano (400 to 1,377 reactions)
- MFiX predicts the same particle mass change and species productions as OpenSMOKE and experimental data

Chemistry Management

Implementation of CHEMKIN Mechanism in MFiX

@(END)

```
@(DES_RXNS)
Reaction_DES_1{
    chem_eq = "F + 2*G --> H + 3*J"
    dh = 2e3
    fracdh(0) = 0.5
    fracdh(1) = 0.5
    arrhenius_coeff = 1e3 -1.0 3e5
    reverse_calc = fromForwardRateConstant
    rxn_order = F: 0.3 G: 2.0
}
```

@(DES_END)

ARRHENIUS_RATES_FLUID = .True. ARRHENIUS_RATES_DES = .True.

Two ways to give the reaction rates:

- 1. <u>User-defined functions (UDF)</u>: usr_rates.f and usr_rates_des.f
- 2. Give parameters used for reaction rates in the input file (no UDF is required):
 - 1) Input the CHEMKIN mechanism file
 - 2) Add the parameters <u>manually</u> using the corresponding keywords

It could be applied to single gas phase and multiphase models in MFiX, like TFM, DEM, CGDEM, and PIC.

It is helpful when the users want to use CHEMKIN mechanisms directly, especially for detailed chemical mechanisms.

CH₄ combustion in a batch reactor using CHEMKIN **GRI-30 mechanism**:

- Constant temperature: $T_0 = 1000K$
- Initial composition: CH_4 : 20 wt.%, O_2 : 80 wt.%

Integrating Machine Learning into MFiX

CFD & Machine Learning Workflow

- Data Generation •
 - Setup •
 - Customize output
 - Run CFD
 - Archive/transfer data
- Data Preparation
 - Data cleanup
 - Data compression/dim. reduction
 - Data labeling .
 - Remove outliers
 - Normalization
 - One-hot encoding
- ML Training
 - Feature selection and engineering
 - Model + hyperparameters
 - Hyperparameter optimization
 - Training
 - Cross-validation
- User-Defined Function (UDF) hook to use ML During Simulation

or

Call ML model at run time

U.S. DEPARTMENT OF

Chemistry ML acceleration

Stiff Solver ML Proxy

- The mechanism for the pyrolysis of high-density polyethylene (HDPE) from Politecnico di Milano is applied to develop and test the ML model
- Data generated by MFiX
- Timing for the reaction terms are compared under three heating rates of particles. Two time-steps are tested
- Current preliminary ML model gives reasonable predictions of particle mass change
- ML model is much faster than the stiff solver, especially with high heating rate and smaller time steps

Time step: dt = 0.5s

	5K/min	10K/min	20K/min
Stiff Solver	276 min	217 min	132 min
ML Model	18 min	10 min	5 min
Speedup	15.3	21.7	26.4

Time step: dt = 0.01s

	5K/min	10K/min	20K/min
Stiff Solver	882 min	441 min	227 min
ML Model	24 min	12.5 min	8 min
Speedup	36.8	35.3	28.4

PIC Stress ML Modeling Using DEM Data

NATIONAL ENERGY TECHNOLOGY LABORATORY

Data Collection

- DEM fluidized bed with various inlet velocities
- Spatially sample average particulate properties:
- Volume fraction (ε), Gradient of volume fraction ($\nabla \varepsilon$), Granular temperature (θ)
 - Average particle velocity (u_p) , its gradient (∇u_p) , Deceleration due to collisions (a)
- Temporal averaging of the spatially sampled data is performed over 50 DEM timesteps
- Distinct dense and dilute regimes are observed. Compaction of particles in the dense region and high deceleration magnitudes
- Sampled DEM deceleration term is different from the Harris and Crighton (1994) model used in PIC approach
- Combining Harris & Crighton criteria with sampled datapoints
 using Bayesian approach
- Incorporating trained BNN model in MFiX code

Outreach: MFiX Stats

Stakeholders and Technology Transfer

All-time MFiX registrations = 8,800+

EY23 Registrations = 725

EY23 Downloads = 9,200

Universities using MFiX in their curriculum:

- Arizona State University
- Pennsylvania State University
- Hamburg University of Technology, Germany
- Universidad de La Serena, Chile
- Universidad Nacional de La
 Plata, Argentina

Resources – MFiX Website

- Showcase NETL's Multiphase Flow Science (MFS) team
 - MFS software
 - Documentation
 - Forum

U.S. DEPARTMENT OF

- Experimental data (challenge problem)
- Publications
- Workshop proceedings
- News and announcements

https://mfix.netl.doe.gov Log Out 0 Employment Support Profile Home of the "MFiX Software Suite About T Research
Publications Workshops Install MFiX Nodeworks MFiX Documentation C3M > MFiX Archive For detailed setup instructions, follow the setup guide. Tracker MFIX Applications MFAL > Windows Linux Mac Source / F **NETL Multiphase Flow Sci** Simulation-Based Engineering Tools to Install Anaconda **MFiX Documentation** Advance Multiphase Flow Systems Download and install Anaconda (lin Latest Documentation US Department of Energy Engineers and Scientists developing and applying Multiphase CFD Tools and using experimentation to advance existing and next-generation energy and environmental devices and systems MFiX User Manual HTML PDF Install MFiX (in nev MFiX Verification and Validation Manual, Second Edition HTML PDF Docs +4 MEIX-DEM Code Verification Test Cases +4.5 DEM05: Oblique particle collisio Open the Anaconda Prompt (installe MFiX PIC Theory Guide PDF 4.5. DEM05: Oblique particle collision Copy and paste the following comm This case serves to verify the normal and tangential components of both the linear spring-dashpo and Hertzian collision models in MFIX DEM. This case is based on the modeling work of Di Renzo MFiX Ver ion conda and Di Maio [15] and utilizes the experimental data of Kharaz, Gorham, and Salman [10] **Older Documentation** 4.5.1. Description This will create a new conda enviror In the experiments of Kharaz, Gorham, and Salman [10], a spherical particle is dropped from a fixe Summary of MFiX Equations (2012) 4. MFIX-DEM Code Verification Te height such that it collides with a rigid surface at a known velocity. The angle of the ridged surface DEM documentation (2012) is varied to test impact angles ranging from normal to glancing. The rebound angle, post-collision 4.1. DEM01: Freely-falling partici Run MFiX angular velocity, and observed tangential restitution coefficient were reported. 4.2. DEM02: Bouncing particle • Cartesian grid user guide (2015) 4.3. DEM03: Two stacked, In the experiment, the particle strikes an angled anvil as illustrated in Fig. 4.11 (a). Rather t Result sensitivity to Fortran compiler (2012) modeling an angled surface, the wall is kept level (flat) and the particle is given an initial trajector 4.4. DEM04: Slipping on a rough corresponding to the angle found in the experiment as shown in Fig. 4.11 (b). The particle is initial positioned close to the wall and gravity is suppressed in the simulations to eliminate the effects of 34.5. DEM05: Oblique particle the rotated geometry with respect to the experimental apparatu Legacy Manuals • Theory guide (1993) 4.5.3. Results 4.6. DEMO6: Single particle Numerics guide (1998) **MFiX Training** ntel setup of Kharat Cocham and Salman [10] of a particle striking a fixed anvil. (b) Simulation setup whereby the particle is given an initial velocity to replicate the particle striking an angled surface PNNL Training (2011) 4.5.2. Setup

View page so

VISIT US AT: mfix.netl.doe.gov

in the second se

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

CONTACT: Jeff Dietiker jean.dietiker@netl.doe.gov

