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Pore Morphology Method — Motivation

Microscale Pros Cons
simulation Method
Pore Network Simple, Cannot handle
Model (PNM) Computationally complicated pore
fast structures

Volume-of-Fluid
(VOF)

Physics based,
fairly accurate,
handle
complicated
geometries

Computationally
very slow

Lattice-Boltzmann

Physics based,

Computationally

Method (LBM) fairly accurate, very slow
handle
complicated
geometries
Energy Physics based, Fails for

Minimization very accurate, disordered
Method (EMM) relatively fast anisotropic
geometries
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Non-wetting phase

Wetting phase (WP)

In this context, PMM simulations offers an
alternate way to conduct fluid intrusion
simulations




WEE_Pore Morphology Method (PMM)

Voxel-based technique

0 = Non-wetting phase (NWP)
1 = Solid
2 = Wetting Phase (WP)
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Example in a 2-D domain
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Dilation

Simulation Domain Process of Dilation

Connectivity

Process of Erosion Erosion

Trilobal shape

r =3[1—A,,sin(3y)] cosy

Young-Laplace equation for
erosion radius

o 20
p = ;(ZD) p= 7(3D)
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Fixed contact angle model:

mo w
p =—cosf
r

Schulz model:
1, =1|cos6 |

Locally variable contact angle model: ki

r = \/Rlz +@+ 2R;r cos 8} — R;

SR

At . Erosion radius
Dilation - Fiber calculated from Contact
radius radius

Young-Laplace angle
equation

0° CA 80° CA
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UL SHEAIIE Force Balance in 2D

Non-wetting phase

A
2!
\4

Wetting phase (WP)

Analytical expression for capillary pressure

sin(a; + 6;"""P) + sin(a, + 6,""P)

Sc —1ysinaq — 1, Sina,

p=-0
Here,

a1& a, are immersion angle

r; & r, are the circles radii
0,""?P & 0,™P are YLCA between the NWP and fiber
o is surface tension & s is distance between center of fibers
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Critical Pressure and Immersion Angle

160
- ——A—— Bucher & Tafreshi (2014)
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With increase of WP contact angle, critical immersion angle increases and critical pressure decreases

T.M. Bucher, H.V. Tafreshi, Colloids and Surfaces A 461, 323 (2014)
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PMM simulation
p. = 3700 Pa, S,, = 0.89 pc = 7650Pa, 5, =0.186 | 10000

) R Y - — 5 Bucher & Tafreshi (2014)
J ' | it Bre-nees MM Simulation

'S

2 8000 |-

Bimodal fibers

6000 |-

Analytical Interface Tracking Method

Capillary Pressure, p (Pa)

— pe = 3700Pa,5, =089 |[pc = 7750Pa, 5, = 0.186 | d,, =5um,dy, = 10 pm,
A . . M & . , ¢ 4000F Y = 20° 0% = 60°
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Excellent agreement was observed between PMM simulation and Analytical Interface Tracking Method
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NCSTATE  PMM in 3D Spherical Particles
Force balance equation

ped, [4 (%)2/3

Simulation domain Erosion Triple contact line (TCL)

_ 5 _ 31
— n(sina,)“| = 4mo sin a. cos - T~ 74

NWP (water)
P.=900Pa d,=100um,e=0.23,60" =110°

TCL has a 3-D wavy profile rather than being a horizontal circle

Immersion angle changes along the TCL around the particle because the AWI has a 3D shape
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) L —Analytical b)
o PMM (LVCA)
4 T aPMM (FCA)

[ ©£=0.23 ©£=0.33 ©¢=041

1.1

=, | £0.9
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S» | d =100um :
<2 BHEEEH A P, (PMM)
05 F Ryc =
1 F PCT(FB)
0'3 1 1 1 1 1 1 1
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E

Agreement between PMM (LVCA) and analytical simulation improve with
increase of SVF due to reduction of waviness profile of TCL
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PMM

900 Pa
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PMM

(b)

=044

. dp =100 um 6% =110°
(d) EMM

PMM cannot capture
the physics of AWI
coalescence and only
predict burst failure

2860 Pa




NCSTATE  Comparison of PMM and VOF

Green: Particles 6," = 80°,d,,; = 8 um Blue: Wetting phase (water)
Red: Particles 8, = 60°,d,, = 5um Transparent: Non-wetting phase (air)

VOF
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NCSTAIE  Comparison of PMM and VOF

 PMM overestimate the
intrusion pressure at high WP

saturation 0T D
70 | & o
- PMM more accurate as the A O 00 o
. 60 A o)
WP saturation decreases at —_ A Q)O
higher intrusion pressure -~ so L A o)
: : =4 A O
« AWI is more circular 5 A A o)
rather than elongate for 540 r A, o
. 7p] ~
densely packed regions E 30 | S A A %
20 A VOF simulations ~a
0 L O  PMM smulations A@
* Van Genutchen (1 980) a
O 1
0.05 0.3 0.55 0.8

WP Saturation, S,
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http://dingercatadventures.blogspot.com/2012/09/

The geometry of fibrous filters is neither symmetric nor periodic
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 PMM inherently treat the lateral boundaries
as symmetry boundaries even if the solid
geometry is not symmetric

« Additional step is required to conduct
accurate PMM simulation

+ Copy the periodic image of the solid
geometry across the periodic
boundaries

¢ Cropped a larger domain and performed
the PMM simulation

% Post-processing was only conducted for
voxel that were inside the original
domain

* Error at boundaries do not
propagate error deep into the
domain in the PMM simulation
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Symmetry boundaries used in PMM simulations

The original periodic geometry
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PMM simulations reasonably accurate in densely packed particle
beds, where interface coalescence is not prevalent

PMM overestimate the intrusion pressure for a given wetting phase
saturation

PMM simulations are many orders of magnitude faster than their
traditional counterparts

PMM only predict the burst failure of AWI
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