

Pore Morphology Method for Modeling Liquid Intrusion in Porous Media

Sashank Gautam^a, Nishant Bhatta^a, Amit Kumar^a, Hooman V. Tafreshi^{a,b}, Behnam Pourdeyhimi^b

^aDepartment of Mechanical and Aerospace Engineering, North Carolina State University ^bThe Nonwovens Institute, North Carolina State University

- Motivation
- Algorithm of Pore Morphology Method (PMM)
- PMM in 2-D & 3-D
- Limitation of PMM
- Conclusions

Microscale simulation Method	Pros	Cons	$S_{c} \longrightarrow$				
Pore Network Model (PNM)	Simple, Computationally fast	Cannot handle complicated pore structures	$ \begin{array}{ c c c c } \hline & \alpha_1 & \mu_{\sigma} & \text{Non-wetting phase} \\ \hline & \alpha_2 & \mu_{c} \\ \hline & \rho_c &$				
Volume-of-Fluid (VOF)	Physics based, fairly accurate, handle complicated geometries	Computationally very slow	Wetting phase (WP)				
Lattice-Boltzmann Method (LBM)	Physics based, fairly accurate, handle complicated geometries	Computationally very slow	In this context, PMM simulations offers an alternate way to conduct fluid intrusion simulations				
Energy Minimization Method (EMM)	Physics based, very accurate, relatively fast	Fails for disordered anisotropic geometries					

NC STATE

Pore Morphology Method (PMM)

0	0	0	0	0	0	0	0	0
0	0	0	0	2	0	0	0	0
0	0	0	2	1	2	0	0	0
0	0	2	1	1	1	2	0	0
0	2	1	1	1	1	1	2	0
0	0	2	1	1	1	2	0	0
0	0	0	2	1	2	0	0	0
0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	0	0	0

Example in a 2-D domain

0 = Non-wetting phase (NWP) 1 = Solid 2 = Wetting Phase (WP)

Morphological Operations

Dilation

Dilated Image

Binary Image

Dilation – enlarges image Erosion – shrinks image

Erosion

Eroded Image

8/23/2024

Our PMM Algorithm Using MATLAB

NC STATE

Non-Zero Contact Angle

Fixed contact angle model:

$$p = \frac{m\sigma}{r}\cos\theta^w$$

Schulz model:

NC STATE

UNIVERSITY

$$r_i' = r \mid \cos \theta_i^w \mid$$

Locally variable contact angle model:

8/23/2024

Force Balance in 2D

Analytical expression for capillary pressure

$$p = -\sigma \frac{\sin(\alpha_1 + \theta_1^{nwp}) + \sin(\alpha_2 + \theta_2^{nwp})}{s_c - r_1 \sin \alpha_1 - r_2 \sin \alpha_2}$$

Here,

 $\alpha_1 \& \alpha_2$ *are* immersion angle

 $r_1 \& r_2$ are the circles radii $\theta_1^{nwp} \& \theta_2^{nwp}$ are YLCA between the NWP and fiber σ is surface tension $\& s_c$ is distance between center of fibers

With increase of WP contact angle, critical immersion angle increases and critical pressure decreases

T.M. Bucher, H.V. Tafreshi, Colloids and Surfaces A 461, 323 (2014)

8/23/2024

NC STATE

NC STATE UNIVERSITY Saturation Patterns in Randomly Distributed Fibers

PMM simulation

Excellent agreement was observed between PMM simulation and Analytical Interface Tracking Method

PMM in 3D Spherical Particles

 \bigotimes

Force balance equation

NC STATE

IVFRSITY

- TCL has a 3-D wavy profile rather than being a horizontal circle
- Immersion angle changes along the TCL around the particle because the AWI has a 3D shape

NC STATE UNIVERSITY Impact of SVF and Contact Angle on Critical Pressure

Agreement between PMM (LVCA) and analytical simulation improve with increase of SVF due to reduction of waviness profile of TCL

NC STATE UNIVERSITY **3-D AWIS of PMM and EMM Simulations**

Comparison of PMM and VOF

Green: Particles $\theta_1^w = 80^\circ$, $d_{p1} = 8 \mu m$ Red: Particles $\theta_2^w = 60^\circ$, $d_{p2} = 5 \mu m$

Blue: Wetting phase (water) Transparent: Non-wetting phase (air)

NC STATE

Comparison of PMM and VOF

 PMM overestimate the intrusion pressure at high WP saturation

NC STATE

- PMM more accurate as the WP saturation decreases at higher intrusion pressure
 - AWI is more circular rather than elongate for densely packed regions

The geometry of fibrous filters is neither symmetric nor periodic

Boundary Condition Treatment

- PMM inherently treat the lateral boundaries as symmetry boundaries even if the solid geometry is not symmetric
- Additional step is required to conduct accurate PMM simulation
 - Copy the periodic image of the solid geometry across the periodic boundaries
 - Cropped a larger domain and performed the PMM simulation
 - Post-processing was only conducted for voxel that were inside the original domain
- Error at boundaries do not propagate error deep into the domain in the PMM simulation

Symmetry boundaries used in PMM simulations

8/23/2024

NC STATE

- PMM simulations reasonably accurate in densely packed particle beds, where interface coalescence is not prevalent
- PMM overestimate the intrusion pressure for a given wetting phase saturation
- PMM simulations are many orders of magnitude faster than their traditional counterparts
- PMM only predict the burst failure of AWI

- Acknowledgement:
 - Financial support from North Carolina Collaboratory Program is gratefully acknowledged.