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Motivation and Objectives

§ Computational Science and Simulation-Based Engineering (SBE): SBE has 
become an indispensable tool for solving complex problems through simulation.

§ Integration of Machine Learning: Machine learning-based models are 
increasingly becoming essential components of SBE, and even replacing parts of it.

§ Advancements in High-Performance Computing: The advent of Exascale 
supercomputers has enabled tackling more challenging problems.

§ Data Management Challenge: There is a substantial gap where the amount of 
data computed greatly exceeds the data saved and the data used in analysis.

Data Used in 
Analysis
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Motivation and Objectives

§ I/O Overhead and Storage Limitations: I/O overhead and data storage limitations 
force researchers to discard some computed data without knowing its potential 
usefulness, leading to inefficiencies and waste of resources.

§ Data Demand of Machine Learning (ML): Machine learning models such deep 
learning require large amounts of data to achieve high accuracy, which highlights 
the importance of efficient data management and utilization.

Hypothesis:
Does a real-time (in-situ) machine learning workflow significantly 
enhance data utilization, model accuracy, and the quality of insights 
derived from simulation results compared to traditional offline (batch) 
machine learning methods?
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Motivation and Objectives

§ Objectives:
§ Develop a Real-Time (In-Situ) ML Workflow:

§ Goal: Construct a flexible and scalable in-situ ML workflow as a proof-of-concept 
demonstration.

§ Focus: Ensure that the workflow integrates seamlessly with existing simulation tools 
and scales effectively with data size and computational resources.

§ Identify Bottlenecks:
§ Task: Diagnose and address any performance or integration issues within the in-situ 

ML workflow.
§ Outcome: Provide insights into the limitations and areas for improvement.

§ Demonstrate Proof-of-Concept Workflow Operation:
§ Integration: Showcase the complete workflow with MFIX-Exa, a state-of-the-art 

multiphase flow CFD code.
§ Scalability: Validate the workflow's capability to handle large-scale simulations 

across multiple nodes.

§ Conduct Comparative Studies:
§ Model Accuracy: Assess and compare the accuracy of ML models developed in-situ 

versus offline.
§ Data Write-Out Frequency: Develop guidelines on optimal data write-out frequency 

to balance between ML model accuracy and computational efficiency.
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Demonstration Case Overview

§ U.S. Department of Energy’s Office of 
Science’s competitively selected ASCR 
Leadership Computing Challenge (ALCC) 
program award (7/1/23-6/30/24*)

§ “Machine Learning-Enhanced Multiphase 
CFD for Carbon Capture Modeling” 

       PI: Jordan Musser (NETL), 
Co-PIs : Aytekin Gel (ALPEMI Consulting), 
      William Fullmer (NETL) 
 

§ Award: 100,000 GPU node hours 
≈ 1/10th of the annual total available GPU  
allocation for ALCC at Perlmutter@NERSC

 
 
 

 

2023 ASCR Leadership Computing Challenge Award                                                                                               
 

 
Title:    Machine Learning-Enhanced Mul�phase CFD for Carbon Capture Modeling 
 
Principal  Jordan Musser (Na�onal Energy Technology Laboratory)  
Inves�gator: 
 
Co-inves�gators:  Aytekin Gel (ALPEMI Consul�ng, LLC), 
   William Fullmer (Na�onal Energy Technology Laboratory) 
  
ALCC Alloca�on:  
 Site(s):  Na�onal Energy Research Scien�fic Compu�ng Center (NERSC) 
 
 Alloca�on(s): 100,000 node-hours on Perlmuter-GPU 
 
Research Summary: 
 
This project leverages machine learning (ML) to enhance simula�on-based engineering models that 
analyze how solid par�cles move and interact with a carrier fluid. Scien�sts use these tools to evaluate 
designs and help troubleshoot advanced par�cle-based reactors; however, because of long simula�on 
�mes, researchers commonly choose faster running, less accurate models to reduce the �me to solu�on. 
MFIX-Exa, a newly developed so�ware designed to efficiently run on modern GPU-accelerated 
supercomputers, will generate high-fidelity datasets for training ML derived surrogate models. The created 
ML models that characterize phenomena like the interac�on force between par�cles and the fluid can be 
incorporated into the faster running simula�on tools to improve accuracy. This effort supports the 
Department of Energy's mission by enabling scien�sts to rapidly evaluate novel gas-solid reactor designs 
for advanced CO2 capture technologies. 

Fact Sheet from 2023-2034 ALCC Awards 
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High Level Overview of 

§ MFIX-Exa was developed under DOE’s Exascale Computing Project (ECP) 
and build using the AMReX framework for performance portability

§ Fluid solver is a low-Mach fluid formulation using an explicit update with an 
approximate projection to enforce incompressibility

§ Contains two Lagrangian particle models that are fully coupled to the fluid
• DEM – Tracks every particle and resolves collisions using the soft-

sphere model
• PIC – Parcels represent collections of particles and only interact via a 

solids pressure
§ MFIX-Exa has been tested on numerous DOE Leadership class facilities 

including Frontier and Summit at ORNL, Perlmutter at NERSC, and Polaris 
and Aurora at ALCF.

§ For more information, please see Wednesday 
      9 AM talk on MFIX-Exa or visit MFIX-Exa website:

https://mfix.netl.doe.gov/products/mfix-exa/
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Demonstration Case Overview

§ Simulated Problem: An unbounded (triply periodic) system of particle 
sedimentation or, equivalently, fluidization. 

§ System size twice as large (in each direction) of the previous state-of-the-art study*

§ Resolution of fluid cells: 1024 × 256 × 256 (approximately 67 million cells)
§ Total number of simulated particles ranging from 10 to 410 million particles as part 

of the simulation campaign.
* S. Beetham, R. O. Fox and J. Capecelatro, “Sparse identification of multiphase turbulence 
closures for coupled fluid–particle flows,” Journal of Fluid Mechanics, 914, A11, 2021 

Domain Size:
Lx = 0.1536 m 
Ly = 0.0384 m 
Lz = Ly

I/O frequency:
Every 0.025s for 
100 times
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Demonstration Case Overview

§ Simulation campaign: carefully designed 33 samples employing space-filling design
§ Two key parameters are systematically varied: 
         Archimedes number (18 ≤ Ar ≤ 92) and initial solids concentration (0.01≤ 𝜙0 ≤0.4)

Graphical illustration of the sampling simulations 
in the parameter space.

𝜙0

Number of particles (millions)

41010
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§ Construct an ML surrogate 
model to characterize 
heterogenous index, H :

§ Constructed ML model can be 
plugged into lower-fidelity CFD 
code (e.g., MFIX-Exa PIC or 
MFiX-PIC) to characterize the 
governing physics without the 
need for high-fidelity resolution 
runs.

§ Dataset: Post-process the data 
generated from the  simulation 
campaign with 33 samples.

Machine Learning Model Development
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Overview of the Dataset from the Simulation Campaign & Data 
Postprocessing

§ Raw dataset:
• 33 samples of simulations (run-01…. run-33)
• Each MFIX-Exa simulation had 100 unique timesteps 

saved in AMReX native file format (/plt*) 

…………….

1.4 Terabytes 2.4 Terabytes

Total Size of 33 Samples Simulation Campaign Results
(Zip Compressed AMReX native format) = 46.8 Terabytes

As part of the ALCC project outcome, raw dataset is available at 
NETL EDX: https://edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run-data 

https://edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run-data


12

Overview of the Dataset from the Simulation Campaign & 
Data Postprocessing

§ Explored various options to handle the dataset 
• Conversion to HDF5 or directly write out in HDF5
• Leverage Python libraries (e.g., DASK, Arkouda)

§ Standalone post-processing tool FilterML employed

Raw AMReX data
Each timestep Standalone post-processing to 

read the raw data and perform 
some averaging calculations to 
generate the training dataset 
for the intended ML model

CSV 

9 columns
x,y,z,
avg_af,

avg_relV,
H_index,
var_af,
drift_flux,
avg_dPdy

Each timestep 
and filter size 
created a separateFilterML

~ 47 Terabytes ~ 528 Gigabytes

Parquet (PQ)

Convert to 
Parquet for efficient 
storage and I/O

175 Gigabytes

PQ
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ML Model Development to compute H-index

§ Preliminary Analysis: Used automated ML tools (PyCaret) 
to explore and eliminate the traditional ML methods.

Filter Size = 128, 3 input features Filter Size = 64, 3 input features

Automated ML Model Construction Results for the transient 
dataset for 33 samples with 100 timesteps each case
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Paradigm Shift: In-Situ ML Training Workflows 

Source: Adopted from “Smartsim: scientific worfklows with simulation and AI” Presentation by Andrew Shao at 
               MMMHub Young Workshop June 2024

• Runs simulation
• Initiates inference  on data

• Accesses data 
produced by application 
and trains model

• Trains in parallel
• Trains multiple models 
and selects best one

• Renders in real time
• Initiate in-situ post-
processing

• Adds information to 
workflow

• Executes model and 
returns result to application

• Selects model to use
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§ SmartSim 
• an open-source library
• aims to bridge the divide between traditional numerical 

simulation and data science
• enables scientists to create advanced and scalable 

workflows for scientific simulations integrated with 
machine learning without the complexity:
- Call Machine Learning (ML) inference in existing Fortran/C/C++ 

simulations
- Exchange data between C, C++, Fortran, and Python applications
- Train ML models online and make predictions using TensorFlow, 

PyTorch, and ONNX
- Analyze data streamed from HPC applications while they are running

In-Situ ML Training Workflow Implementation with  

Source: “Smartsim: scientific worfklows with simulation and AI” Presentation by Andrew Shao at 
               MMMHub Young Workshop June 2024

github.com/CrayLabs/SmartSim

https://github.com/CrayLabs/SmartSim
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Source: Illustrations adapted from “Smartsim: scientific worfklows with simulation and AI” Presentation by Andrew Shao      
              at MMMHub Young Workshop June 2024

Typical SmartSim / SmartRedis Integrated Workflow:

In-Situ ML Training Workflow Implementation with  
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Proof-of-Concept Implementation of the In-Situ ML Workflow

MFIX-Exa 
run 1

Each simulation running on 32 
GPU nodes (4 NVIDIA A100/node)

Data
 st

rea
med

Data streamed

Data streamed

All in-memory, no read/writes to filesystem

Database can be scaled up to any number of 
nodes with clustered database setup

Intelligent 
Downsampling

(Uniform-in- 
phase-space 

Sampling Module)

Machine 
Learning Model 

Training

PyTorch

Runs on 1 GPU node 

Runs on 1 GPU node 

Orchestrator
Database

Runs on 1 GPU node

SmartRedis

 Client API

MFIX-Exa 
run 2 SmartRedis 

Client API

MFIX-Exa 
run N SmartRedis 

Client API

SmartRedis 

Client API

SmartRedis 

Client API

(C++)(C++)

Can be expanded up to any number of nodes

Can be expanded up to any number of nodes
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Intelligent Downsampling (Uniform-in-Phase-Space Sampling)

§ Computationally efficient data selection 
method to reduce number of datapoints, 
which is applicable to any dataset

§ Objective: 
• Select n datapoints 

s. t. 
- n << N
- n data points are uniformly distributed 

in phase-space
- n data points cover the full phase-

space
§ Why do that?

• Ensure that rare data points are not discarded
• Eliminate redundant data

§ Open-source developed at NREL:
   

Source: Adopted from “Data-Driven Reacting Flow Model Development: Data Sampling, Non-Linear 
Models and Uncertainty Quantification” Presentation at Stanford FLAME AI Workshop September 2023

github.com/NREL/Phase-space-sampling
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Intelligent Downsampling (Uniform-in-Phase-Space Sampling)

Source: Adopted from “Data-Driven Reacting Flow Model Development: Data Sampling, Non-Linear 
Models and Uncertainty Quantification” Presentation at Stanford FLAME AI Workshop September 2023

Uniform-in-Phase 
Space Sampling
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Intelligent Downsampling (Uniform-in-Phase-Space Sampling)

Example of Standalone Application of Uniform-in-Phase Space Sampling 
for Filter Size = 64
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Proof-of-Concept Demonstration of the In-Situ ML Workflow

§ Selected 10 cases out of 33
• Decision based on remaining ALCC allocation 

and end of allocation year deadline

§ Restarted from the last saved 
timestep in each case

§ FilterML integrated MFIX-Exa 
• Test runs with filter sizes 8, 16, 32, 64, 128 
• Streamed every single timestep

§ Downsampler module:
• Downsampled every 2 timesteps
• Downsampled to 5% of original data

§ ML Trainer module:
• After initial training group data, training data 

grew as more data arrived from simulations.
• PyTorch-based very simple neural network 

architecture (can be easily replaced with better one)
• Max epoch set to 50

Number of particles (millions)

41010 115 𝜙0



22

Proof-of-Concept Demonstration of the In-Situ ML Workflow

Trial # 1
§ Single MFIX-Exa 

(run-01) running 16 
GPU nodes

§ Filter size = 128
§ 19 GPU nodes
§ Total wall-clock = 

20 minutes
§ First successful 

operation of the in-
situ ML workflow

Trial # y Trial # yy

§ Ensemble MFIX-
Exa runs (2 select 
run-xx), each 
running on 16 GPU 
nodes

§ Filter size = 128
§ 35 GPU nodes
§ Total wall-clock = 

60 minutes
§ First successful 

operation of 
ensemble of MFIX-
Exa simulations 
generating data for 
in-situ ML workflow

……..
§ Ensemble MFIX-Exa 

runs with number of 
cases going up to 
10

§ Decreasing Filter 
sizes (64,32,…) to 
test increasing data 
streamed

§ Increasing GPU 
nodes allocated

§ Total wall-clock = 1 
to 12 hours

§ Test stability of the 
In-Situ Workflow
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Proof-of-Concept Demonstration of the In-Situ ML Workflow

§ Ensemble MFIX-Exa 
runs (10 select run-
xx), each running on 
16 GPU nodes

§ Filter size = 16
§ 163 GPU nodes
§ Total wall-clock = 

20 hours execution
§ First prototype 

production run 
demonstration

Trial # yyy

Log of the trainer module showing decreasing loss 
function progress after 50 epochs

Started showing up on NERSC 
Website Top Running Jobs List
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Proof-of-Concept Demonstration of the In-Situ ML Workflow

Trial # Last

§ Ensemble MFIX-
Exa runs (10 select 
run-xx), each 
running on 32 GPU 
nodes

§ Filter size = 8
§ 323 GPU nodes
§ Total wall-clock = 

12 hours
§ First time filter 

size= 8 tested for 
long duration
~1.3e6 rows /timestep

NERSC Website showing In-situ ML 
Training as the Top Running Job 
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Concluding Remarks and Observations

§ Proof-of-concept demonstration of a first-of-its-kind, 
scalable capability to perform in-situ ML training for 
multiphase flow simulations.
• Leveraged all open-source tools and frameworks 

- MFIX-Exa(NETL), SmartSim (HPE), Uniform-in-Phase-Space 
Sampling (NREL)

• Implemented an in-situ intelligent downsampling methodology coupled 
with the ML training, which can be on and off based on needs.

• Demonstrated the scalability of the workflow from 16 to 323 GPU 
nodes of Perlmutter (could have gone higher but ran of time & space).

§ As part of the ALCC project outcome, raw dataset       
for the 33 simulations is available for researchers 
interested to explore with their ML models at 
NETL EDX: https://edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run-data 

https://edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run-data
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Motivation and Objectives

§ Objectives:
§ Develop a Real-Time (In-Situ) ML Workflow:

§ Goal: Construct a flexible and scalable in-situ ML workflow as a proof-of-concept 
demonstration.

§ Focus: Ensure that the workflow integrates seamlessly with existing simulation tools 
and scales effectively with data size and computational resources.

§ Identify Bottlenecks:
§ Task: Diagnose and address any performance or integration issues within the in-situ 

ML workflow.
§ Outcome: Provide insights into the limitations and areas for improvement.

§ Demonstrate Proof-of-Concept Workflow Operation:
§ Integration: Showcase the complete workflow with MFIX-Exa, a state-of-the-art 

multiphase flow CFD code.
§ Scalability: Validate the workflow's capability to handle large-scale simulations 

across multiple nodes.

§ Conduct Comparative Studies:  (To be completed subject to allocation)
§ Model Accuracy: Assess and compare the accuracy of ML models developed in-situ 

versus offline.
§ Data Write-Out Frequency: Develop guidelines on optimal data write-out frequency 

to balance between ML model accuracy and computational efficiency.

✓

✓

✓
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Concluding Remarks and Observations

§ Many interesting potential research directions to explore:
• In-situ construction of multiple ML models concurrently with different 

architectures (e.g. PINNs, Neural Operators, mixed precision) for the 
same dataset and automatic decision support to identify the best one. 

• Identify the optimal frequency of I/O for off-line processing for a given 
level of ML model accuracy by comparing with in-situ based ML models.

• Assess the effect of intelligent downsampling vs. direct use of raw data.
• Automatic decision support to enable/disable intelligent downsampling 

(uniform-in-phase space sampling) to avoid stalls in the ML pipeline.
• Phase-space sampling targeting multiple quantities of interest rather 

than one.
• In-situ statistical outlier detection to detect anomalies during the 

simulations rather afterwards.
• Integration with Nodeworks to lower the barrier and enable GUI based 

in-situ ML workflow construction and deployment.
• Computational steering by leveraging the in-situ ML model constructed 

and reinforcement learning.
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Thank you for your attention.
Questions?
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