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Motivation and Objectives
-

= Computational Science and Simulation-Based Engineering (SBE): SBE has
become an indispensable tool for solving complex problems through simulation.

= Integration of Machine Learning: Machine learning-based models are
increasingly becoming essential components of SBE, and even replacing parts of it.

= Advancements in High-Performance Computing: The advent of Exascale
supercomputers has enabled tackling more challenging problems.

= Data Management Challenge: There is a substantial gap where the amount of
data computed greatly exceeds the data saved and the data used in analysis.

A 4
N 4
) 4

o
ALPEMI @ 9¢°
CONSULTING 3



Motivation and Objectives
-

= |/O Overhead and Storage Limitations: I/O overhead and data storage limitations
force researchers to discard some computed data without knowing its potential
usefulness, leading to inefficiencies and waste of resources.

= Data Demand of Machine Learning (ML): Machine learning models such deep
learning require large amounts of data to achieve high accuracy, which highlights
the importance of efficient data management and utilization.

Hypothesis:
Does a real-time (in-situ) machine learning workflow significantly
enhance data utilization, model accuracy, and the quality of insights
derived from simulation results compared to traditional offline (batch)
machine learning methods?
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Motivation and Objectives

- 000000000}
= Objectives:

= Develop a Real-Time (In-Situ) ML Workflow:

= Goal: Construct a flexible and scalable in-situ ML workflow as a proof-of-concept
demonstration.

= Focus: Ensure that the workflow integrates seamlessly with existing simulation tools
and scales effectively with data size and computational resources.
= |dentify Bottlenecks:

= Task: Diagnose and address any performance or integration issues within the in-situ
ML workflow.

= Outcome: Provide insights into the limitations and areas for improvement.

= Demonstrate Proof-of-Concept Workflow Operation:

= [Integration: Showcase the complete workflow with MFIX-Exa, a state-of-the-art
multiphase flow CFD code.

= Scalability: Validate the workflow's capability to handle large-scale simulations
across multiple nodes.

= Conduct Comparative Studies:

= Model Accuracy: Assess and compare the accuracy of ML models developed in-situ
versus offline.

= Data Write-Out Frequency: Develop guidelines on optimal data write-out frequency
to balance between ML model accuracy and computational efficiency.
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Demonstration Case Overview

]
Fact Sheet from 2023-2034 ALCC Awards

U.S. DEPARTMENT OF

= U.S. Department of Energy’s Office of ENERGY | onee
Science’s competitively selected ASCR
Leadership Computing Challenge (ALCC)
program award (7/1/23-6/30/24%) Jordan s (s gy Tty Laborston)

Investigator:

Co-investigators: Aytekin Gel (ALPEMI Consulting, LLC),

William Fullmer (National Energy Technology Laboratory)
= “Machine Learning-Enhanced Multiphase
- ”» Site(s): National Energy Research Scientific Computing Center (NERSC)
C F D fo r Ca rbo n Ca ptu re M Odel I n g Allocation(s): 100,000 node-hours on Perlmutter-GPU
Pl: Jordan Musser (NETL), Fesearch Summar

This project leverages machine learning (ML) to enhance simulation-based engineering models that
. H H analyze how solid particles move and interact with a carrier fluid. Scientists use these tools to evaluate

CO-P I s . Ayte kl n G el (AL P E M I CO n S u Itl ng ), designs and help troubleshoot advanced particle-based reactors; however, because of long simulation
times, researchers commonly choose faster running, less accurate models to reduce the time to solution.
“11: MFIX-Exa, a newly developed software designed to efficiently run on modern GPU-accelerated
WI I I Ia m F u I I m e r ( N ET L) supercomputers, will generate high-fidelity datasets for training ML derived surrogate models. The created
ML models that characterize phenomena like the interaction force between particles and the fluid can be

incorporated into the faster running simulation tools to improve accuracy. This effort supports the
Department of Energy's mission by enabling scientists to rapidly evaluate novel gas-solid reactor designs

= Award: 100,000 GPU node hours

= 1/10t of the annual total available GPU
allocation for ALCC at Perimutter@NERSC

2023 ASCR Leadership Computing Challenge Award

O. o°
ALPEMI @ “o
CONSULTING 6




=~
High Level Overview of MFIx _Xa

= MFIX-Exa was developed under DOE’s Exascale Computing Project (ECP)
and build using the AMReX framework for performance portability
= Fluid solver is a low-Mach fluid formulation using an explicit update with an

approximate projection to enforce incompressibility
= Contains two Lagrangian particle models that are fully coupled to the fluid
e DEM - Tracks every particle and resolves collisions using the soft-
sphere model
e PIC — Parcels represent collections of particles and only interact via a
solids pressure

=  MFIX-Exa has been tested on numerous DOE Leadership class facilities
including Frontier and Summit at ORNL, Perimutter at NERSC, and Polaris

and Aurora at ALCF.
= For more information, please see Wednesday

9 AM talk on MFIX-Exa or visit MFIX-Exa website:

o
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Demonstration Case Overview
[

= Simulated Problem: An unbounded (triply periodic) system of particle
sedimentation or, equivalently, fluidization.

=  System size twice as large (in each direction) of the previous state-of-the-art study*

Cluster-Induced Turbulence

"run-18"
Ar=88.1
ap=0.139

g (s71)
4000.

[ 3000.

— 2000.

Domain Size:
\ : ) _ Lx =0.1536 m

~ 1000. | & Y | Ly =0.0384 m

N : ' Lz=Ly

I/0O frequency:

Every 0.025s for

100 times

= Resolution of fluid cells: 1024 x 256 X 256 (approximately 67 million cells)

= Total number of simulated particles ranging from 10 to 410 million particles as part
of the simulation campaign. .

@
* S. Beetham, R. O. Fox and J. Capecelatro, “Sparse identification of multiphase turbulence ALPEMI
closures for coupled fluid—particle flows,” Journal of Fluid Mechanics, 914, A11, 2021 CONSULTING 8




Demonstration Case Overview

=  Simulation campaign: carefully designed 33 samples employing space-filling design
= Two key parameters are systematically varied:
Archimedes number (18 < Ar < 92) and initial solids concentration (0.01< ¢, <0.4)

Graphical illustration of the sampling simulations
in the parameter space.
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Machine Learning Model Development
]
= Construct an ML surrogate

model to characterize
heterogenous index, H :

—

H=f(A*, b Wi (aﬁ)*, Ar)

ox

= Constructed ML model can be

plugged into lower-fidelity CFD M A"
code (e.g., MFIX-Exa PIC or ® wp O >
MFiX-PIC) to characterize the &
governing physics without the
need for high-fidelity resolution
runs.
= Dataset: Post-process the data
generated from the simulation
campaign with 33 samples.
Input Layer Hidden Layer,  .......... Hidden Layer,  Output Layer

@
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Overview of the Dataset from the Simulation Campaign & Data

Postprocessing
R

= Raw dataset:
e 33 samples of simulations (run-01.... run-33)

 Each MFIX-Exa simulation had 100 unique timesteps
saved in AMReX native file format (/plt*)

1 /plt19909 4.7 1 /plt25166 17 1 /plt027725 29 1 /plt28102
2 [plt20450 4.7 2 /plt28180 17 2 /plt031095 29 2 /plt32106
run-01 ... ... run-02 ... ... run-03 ... ... ssssssszsssssass run-33 ... ...
99 /plt72481 4.7 99 /plt308910 17 99 /plt310054 29 99 /plt302597
100 /plt72981 4.7 100 /plt311974 17 100 /plt313316 29 100 /plt323079
Total run-01 size: 471 Total run-02 size: 1700 Total run-03 size: 2900 Total run-33 size:
Zip Compressed Total size: 412 Zip Compressed Total size: 1400 Zip Compressed Total size: 2400 Zip Compressed Total size:

1.4 Terabytes 2.4 Terabytes

Total Size of 33 Samples Simulation Campaign Results
(Zip Compressed AMReX native format) = 46.8 Terabytes

As part of the ALCC project outcome, raw dataset is available at ALPEMI O
NETL EDX: https:/edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run-data CONSULTING 1



https://edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run-data

Overview of the Dataset from the Simulation Campaign &

Data Postprocessing
I SSSSSSSSSSSS—————_——

= Explored various options to handle the dataset
e Conversion to HDF5 or directly write out in HDF5
e Leverage Python libraries (e.g., DASK, Arkouda)
= Standalone post-processing tool FilterML employed

Each timestep
and filter size

FilterML created a separate

Raw AMReX data

Each timestep Standalone post-processing to
read the raw data and perform csv Convert to
> | some averaging calculations to . > |Parquet for efficient PQ

generate the training dataset 9 columns storage and I/O

for the intended ML model X,Y,2Z,
avg_af, Parquet (PQ)
avg_relv, 175 Gigabytes
H_index,
var_af,
drift_flux,
avg_drdy

ALPEMI O
~ 47 Terabytes ~ 528 Gigabytes CONSULTING 12



ML Model Development to compute H-index

= Preliminary Analysis: Used automated ML tools (PyCaret)
to explore and eliminate the traditional ML methods.

Automated ML Model Construction Results for the transient
dataset for 33 samples with 100 timesteps each case

| Model | MAE | MSE RMSE|[ __R2 RMSLE [MAPE [TT (Sec)| | Model | MAE| MSE RMSE R2 [RMSLE [MAPE [TT (Sec)
lightgbm [Light Gradient Boosting Machine [0.0662 [0.0305 [0.1739 [0.5356 [0.0855 [0.3151 [1.394 | lightgbm [Light Gradient Boosting Machine [0.1061 [0.05250.2288 [0.4488 [0.1143 [0.4349 [2.060
gbr  |Gradient Boosting Regressor 0.0685(0.0313|0.1763 |0.5225 [0.0872 |0.3380 (7.662 |xgboost Extreme Gradient Boosting 0.1054 [0.0530 |0.2298 |0.4438 |0.1145 |0.4266 |0.514
|catboost |CatBoost Regressor 0.0673|0.0320 0.1780 |0.5131 [0.0869 |0.3184 |5.008 catboost [CatBoost Regressor 0.1073 0.0535 |0.2309 04385 |0.1157 |0.4368 |5.282
| rf  [Random Forest Regressor 0.0663 0.0328 [0.1804 0.5003 [0.0892 [0.3162 [0.730 gbr  [Gradient Boosting Regressor  [0.1092 [0.0540 [0.2320 [0.4331 [0.1167 [0.4632 [71.024
| et |Extra Trees Regressor 0.0676 0.0340 ‘0.1837 0.4819 |0.0911 |0.3251 |0.322 rf  |[Random Forest Regressor 0.1087 |0.0562 02367 (04101 [0.1196 [0.4424 |6.541
xgboost [Extreme Gradient Boosting 0.0673 [0.0345 [0.1849 [0.4742 [0.0896 [0.3163 [0.237 et  [Extra Trees Regressor 0.1114 [0.0588 [0.2422 [0.3824 [0.1227 [0.4543 [1914
knn  [K Neighbors Regressor 0.0691[0.0352(0.1869 [0.4637 [0.0938 [0.3217 [0.092 knn  [K Neighbors Regressor 0.1139[0.0616 [0.2478 [0.3531  [0.1266 [0.4530 [0.660
lar |Least Angle Regression 0.1253|0.0514 0.2263 |0.2131 [0.1286 |0.6419 [0.018 lar  [Least Angle Regression 0.1740 |0A0830 0.2878 0.1270 0.1625 |0.8086 [0.059
[ br [Bayesian Ridge [0.1253[0.0514[0.2263 [0.2131 [0.1286 [0.6419 [0.023 br  [Bayesian Ridge 0.1740[0.0830 [0.2878 [0.1270 [0.1625 [0.8086 [0.080
| ridge [Ridge Regression 0.1253[0.0514(0.2263 [0.2131 [0.1286 [0.6419 [0.018 ridge [Ridge Regression 0.1740 [0.0830 [0.2878 [0.1270 [0.1625 [0.8086 [0.056
I [Linear Regression 0.1253[0.0514(0.2263 0.2131 [0.1286 [0.6419 [0.036 Ir  [Linear Regression 0.17400.0830 |0.2878 |0.1270 |0.1625 |0.8086 |0.080
omp [Orthogonal Matching Pursuit  [0.1217[0.0524 [0.2285 [0.1977 [0.1285 [0.6079 [0.017 omp |Orthogonal Matching Pursuit  |0.1688 |0.08530.2919 [0.1023 |0.1625 |0.7526 0.056
dt [Decision Tree Regressor 0.0878 0.0603[0.2449 [0.0767 [0.1176 [0.4022 [0.421 huber [Huber Regressor 0.1574 [0.0927 [0.3042 [0.0245 [0.1680 [0.5588 [0.718
huber |[Huber Regressor 0.1060 |0.0611 0.2468 [0.0636 [0.1382 [0.3961 [0.127 lasso |Lasso Regression 0.1794 (0.0950 |0.3080 |-0.0000 [0.1737 |0.8377 |0.074
lasso [Lasso Regression 0.1352[0.0652(0.2550 [-0.0001 [0.1485 [0.7470 [0.022 en  [Elastic Net 0.1794 /0.09500.3080 |-0.0000 |0.1737 |0.8377 [0.080
en |E1astic Net 0.1352(0.0652 ‘0_2550 -0.0001(0.1485 [0.7470 [0.017 | llar ‘Lasso Least Angle Regression  |0.1794 0.0950 |0.3080 |—0.0000 0.1737 |0.8377 |0.056
lNar |Lasso Least Angle Regression  [0.1352(0.0652 [0.2550 [-0.0001 [0.1485 [0.7470 [0.017 dummy [Dummy Regressor 0.17940.0950 [0.3080 |-0.0000 |0.1737 0.8377 |0.047
dummy [Dummy Regressor 0.1352[0.0652 [0.2550 [-0.0001 [0.1485 [0.7470 |0.015 dt  [Decision Tree Regressor 0.14570.1081 [0.3286 -0.1395 [0.1603 [0.5642 4.564
ada |AdaBoost Regressor 0.14660.0927[0.3001 [-0.4129[0.1670 0.9593 [0.912 | par [Passive Aggressive Regressor  [0.3079(0.2272[0.4615 [-1.3544 [0.2518 [1.3010 [0.257
[ par |[Passive Aggressive Regressor [0.3326[0.3390 0.4967 [-3.8829[0.2332 [1.8604 [0.042 | ada  [AdaBoost Regressor 0.7169 [1.8142[1.2263 |-18.6689(0.5074 [4.1059 [18.496
Filter Size = 128, 3 input features Filter Size = 64, 3 input features

@
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Paradigm Shift: In-Situ ML Training Workflows

Typical Numerical Workflows New Al-Enhanced Numerical Workflows

Input data

¢ Set of initial conditions
e File representing geometry
e Hard-coded values

* Executes model and
returns result to application
» Selects model to use

Monolithic Application

e HPC native

¢ Parallel C/C++/Fortran

¢ Contains all needed logic
e Outputs to filesystem

\Y[eYo =] Visualization
Training and Analysis

h [

* Accesses data A : :
Postprocessing produced by application HPC Para llel Renders in real time
and trains model Appllcatlon * Initiate in-situ post-

e Stored on filesystem
e Visualize or run analysis

processing

» Adds information to
workflow

* Trains in parallel

* Trains multiple models
L and selects best one

* Runs simulation
« Initiates inference on data

Source: Adopted from “Smartsim: scientific worfklows with simulation and Al” Presentation by Andrew Shao at o o
MMMHub Young Workshop June 2024 @ _o°
ALPEMI @ “o
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In-Situ ML Training Workflow Implementation with SrmamT E@go

= SmartSim
e an open-source library

e aims to bridge the divide between traditional numerical
simulation and data science

e enables scientists to create advanced and scalable
workflows for scientific simulations integrated with
machine learning without the complexity:

— Call Machine Learning (ML) inference in existing Fortran/C/C++
simulations

— Exchange data between C, C++, Fortran, and Python applications

— Train ML models online and make predictions using TensorFlow,
PyTorch, and ONNX

— Analyze data streamed from HPC applications while they are running

Source: “Smartsim: scientific worfklows with simulation and Al” Presentation by Andrew Shao at
MMMHub Young Workshop June 2024

o
ALPEMI @
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https://github.com/CrayLabs/SmartSim

O—
In-Situ ML Training Workflow Implementation with sSma=T EEL;O

Typical SmartSim / SmartRedis Integrated Workflow:

Feature Store (Orchestrator)
Native C/C++/Fortran

simulation | T
=
—) SmartRedis P R—

g | Interactive or
@ @ | Automated
Al Models Al Models e e SmartRedis —) Analysis and
] Client API —_— Client API < Visualization
| I Data Sources Code / Scripts

PYTORCH | TENSORFLOW | ONNX

I All of these can be done without touching the filesystem I

Source: lllustrations adapted from “Smartsim: scientific worfklows with simulation and Al” Presentation by Andrew Shao
at MMMHub Young Workshop June 2024

@

R
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Proof-of-Concept Implementation of the In-Situ ML Workflow

Each simulation running on 32
GPU nodes (4 NVIDIA A100/node)

(VLY smartRedis
MFIX-Exa oe,
Client API Qe
s
S
S

Intelligent
SmartRedis Downsampling
(Uniform-in-
phase-space
Sampling Module)

Client API

(C++) (C++) Runs on 1 GPU node
LY smartRedis
MFIX-Exa . m
ient wd
o Machine
0 SmartRedis Learning Model
8 Client APl ULl
o Database PyTorch
Runs on 1 GPU node Runs on 1 GPU node

LU smartRedis
MFIX-Exa
Client API
\ J

Can be expanded up to any number of nodes

\ )

Can be expanded up to any number of nodes

All in-memory, no read/writes to filesystem

Database can be scaled up to any number of °

. ®°
nodes with clustered database setup é‘ailEs"l"J'LIN -



Intelligent Downsampling (Uniform-in-Phase-Space Sampling)

=  Computationally efficient data selection
method to reduce number of datapoints,
which is applicable to any dataset

= QObijective:
e Select n datapoints
s. L.
-~ n<<N
— n data points are uniformly distributed
In phase-space

— n data points cover the full phasc- il e SR
space

=  Why do that?

* Ensure that rare data points are ot discarded
e Eliminate redundant data

Rescaled C2

= QOpen-source developed at NREL.:

@

@
ALPEMI
Source: Adopted from “Data-Driven Reacting Flow Model Development: Data Sampling, Non-Linear CON SULIN 18
Models and Uncertainty Quantification” Presentation at Stanford FLAME Al Workshop September 2023



Intelligent Downsampling (Uniform-in-Phase-Space Sampling)

DNS

Rescaled C?

Uniform-in-Phase

. =g .
. Random samplin Stratified samplin
Space Sampling pling pling
0.5 .
Rescaled C

50 50 50

40 40 40
o o IS

L 30 L 30 L 30
n=10° : 3 :
= g g g

é 20 E 20 é 20

10 — 10 10

0 " . . 0 ol 0 :
0.5 0.0 0.5 Lo 10 0.5 0.0 0.5 Lo
Rescaled C Rescaled C Rescaled C
4
n=10
—0.5 0.0 0.5 Lo 0.5 0.0 0.5 10 0.5 0.0
Rescaled C Rescaled C

0.5 L0
Rescaled C

Source: Adopted from “Data-Driven Reacting Flow Model Development: Data Sampling, Non-Linear
Models and Uncertainty Quantification” Presentation at Stanford FLAME Al Workshop September 2023

@
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Intelligent Downsampling (Uniform-in-Phase-Space Sampling)

Example of Standalone Application of Uniform-in-Phase Space Sampling
for Filter Size = 64

o Retained data ° 1.04
+ Removed data
84 30 A
0.9 1
251
6 0.8
201
= “— x
o 4 B4 £ ]
g4 s = .o
o o
0.6 1 '.
10 1
21 0.5
54
0.4 1
04 04
T T T T T T T T T T T T T T T
—200000 -150000 -100000 —50000 0 —200000 -150000 -100000 -—50000 0 —200000 -150000 -100000 -—50000 0
avg_dPdy avg_dPdy avg_dPdy
1.0 4
30 4 30 A
0.9
254 o 25 A
0.8
204 20 4
.
= 0.7 3 3
! © ° ©
= £ % £ o
© e 15 i I| 15 .
o
0s B
109 @&° 10 A
o
0.5
54 54
0.4
0+ 04
T T T T T T T T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8 0.4 0.5 0.6 0.7 0.8 0.9 1.0
avg_relv avg_relv avg_af
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Proof-of-Concept Demonstration of the In-Situ ML Workflow

100.0

Selected 10 cases out of 33 \
» Decision based on remaining ALCC allocation >

.0
0.0
0.0 |

60.0

and end of allocation year deadline

4 500 bounds
r ol b

= Restarted from the last saved wol| o sl
timestep in each case el o Suges
= FilterML integrated MFIX-Exa w00’F
. Test runs with filter sizes 8, 16, 32, 64, 128 Pow o1 0w  on o
e Streamed every single timestep 10 115 o 410
= Downsam pler module: Number of particles (millions)

 Downsampled every 2 timesteps
 Downsampled to 5% of original data

= ML Trainer module:

e After initial training group data, training data
grew as more data arrived from simulations.

e PyTorch-based very simple neural network

architecture (can be easily replaced with better one) ALPEMI Oo

 Max epoch set to 50 CONSULTING 2|



Proof-of-Concept Demonstration of the In-Situ ML Workflow

Trial # 1

Single MFIX-Exa
(run-01) running 16
GPU nodes

Filter size = 128
19 GPU nodes

Total wall-clock =
20 minutes

First successful
operation of the in-
situ ML workflow

Trial #y

Ensemble MFIX-
Exa runs (2 select
run-xx), each
running on 16 GPU
nodes

Filter size = 128
35 GPU nodes

Total wall-clock =
60 minutes

First successful
operation of
ensemble of MFIX-
Exa simulations
generating data for
in-situ ML workflow

Trial # yy

Ensemble MFIX-Exa
runs with number of
cases going up to
10

Decreasing Filter
sizes (64,32,...) to
test increasing data
streamed

Increasing GPU
nodes allocated

Total wall-clock = 1
to 12 hours

Test stability of the
In-Situ Workflow

o
ALPEMI
CONSULTING 2



Trial # yyy

Ensemble MFIX-Exa
runs (10 select run-
XX), each running on
16 GPU nodes

Filter size =16
163 GPU nodes

Total wall-clock =
20 hours execution

First prototype
production run
demonstration

Initializing Data Generator

Fitting scaler

Beginning training loop

Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
Loss
:TIME

function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
function:
ELAPSED Training step 1.4363384540192783

0.09619668871164322
0.08910127729177475
0.0851670652627945
0.08261381089687347
0.0785333663225174
0.07413556426763535
0.06933750212192535
0.06570214033126831
0.06148453801870346
0.061030469834804535
0.056127648800611496
0.055097974836826324
0.048788271844387054
0.04844445735216141
0.044939033687114716
0.04389194771647453
0.04131445288658142
0.04006652534008026
0.037928592413663864
0.035487689077854156
0.03205966576933861
0.03273927420377731
0.0292130708694458
0.029631394892930984
0.02819298766553402
0.026997467502951622
0.02565888687968254
0.024672124534845352
0.02120424248278141
0.022206377238035202
0.0202163215726614
0.020730257034301758
0.01914270594716072
0.01719050668179989
0.018636707216501236
0.017125103622674942
0.016454549506306648
0.0157964788377285
0.01608632318675518
0.01502862386405468
0.014910456724464893
0.013407580554485321
0.014263911172747612
0.014529166743159294
0.013453206047415733
0.013202277943491936
0.01366801280528307
0.013635891489684582
0.013453234918415546
0.01204115990549326

Saving the model

Log of the trainer module showing decreasing loss

function progress after 50 epochs

Proof-of-Concept Demonstration of the In-Situ ML Workflow
-

Started showing up on NERSC
Website Top Running Jobs List

search...
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-
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Concluding Remarks and Observations
-

= Proof-of-concept demonstration of a first-of-its-kind,
scalable capability to perform in-situ ML training for

multiphase flow simulations.
* Leveraged all open-source tools and frameworks

— MFIX-Exa(NETL), SmartSim (HPE), Uniform-in-Phase-Space
Sampling (NREL)
* Implemented an in-situ intelligent downsampling methodology coupled
with the ML training, which can be on and off based on needs.

e Demonstrated the scalability of the workflow from 16 to 323 GPU
nodes of Perlmutter (could have gone higher but ran of time & space).

[=] kbl 2
NETL EDX: https://edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run- aawa

o
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https://edx.netl.doe.gov/dataset/mfix-exa-alcc2324-run-data

Motivation and Objectives

- 000000000}
= Objectives:

= Develop a Real-Time (In-Situ) ML Workflow: v’

= Goal: Construct a flexible and scalable in-situ ML workflow as a proof-of-concept
demonstration.

= Focus: Ensure that the workflow integrates seamlessly with existing simulation tools
and scales effectively with data size and computational resources.

= |dentify Bottlenecks: v

= Task: Diagnose and address any performance or integration issues within the in-situ
ML workflow.

= Outcome: Provide insights into the limitations and areas for improvement.

= Demonstrate Proof-of-Concept Workflow Operation: v/

= [Integration: Showcase the complete workflow with MFIX-Exa, a state-of-the-art
multiphase flow CFD code.

= Scalability: Validate the workflow's capability to handle large-scale simulations
across multiple nodes.

= Conduct Comparative Studies: (To be completed subject to allocation)

= Model Accuracy: Assess and compare the accuracy of ML models developed in-situ
versus offline.

= Data Write-Out Frequency: Develop guidelines on optimal data write-out frequency
to balance between ML model accuracy and computational efficiency.

@
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Concluding Remarks and Observations

= Many interesting potential research directions to explore:

In-situ construction of multiple ML models concurrently with different
architectures (e.g. PINNs, Neural Operators, mixed precision) for the
same dataset and automatic decision support to identify the best one.

|dentify the optimal frequency of I/O for off-line processing for a given
level of ML model accuracy by comparing with in-situ based ML models.

Assess the effect of intelligent downsampling vs. direct use of raw data.

Automatic decision support to enable/disable intelligent downsampling
(uniform-in-phase space sampling) to avoid stalls in the ML pipeline.

Phase-space sampling targeting multiple quantities of interest rather
than one.

In-situ statistical outlier detection to detect anomalies during the
simulations rather afterwards.

Integration with Nodeworks to lower the barrier and enable GUI based
in-situ ML workflow construction and deployment.

Computational steering by leveraging the in-situ ML model constructed

and reinforcement learning. ALPEMI
CONSULTING 27



Thank you for your attention.
Questions?
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