

Direct numerical simulation of flow past randomly distributed Platonic polyhedrons

Aashish Goyal, Guodong Gai, Zihao Cheng, and Anthony Wachs

University of British Columbia Vancouver, BC, Canada

2024 Multiphase Flow Science Workshop, Morgantown, WV, United States August 13–14, 2024

Background

Chen et al., Nature Scientific Reports, 2023

Fluctuating term models

Five Platonic polyhedrons with increasing sphericity κ . (a) Tetrahedron, $\kappa = 0.670$, (b) Cube, $\kappa = 0.806$, (c) Octahedron, $\kappa = 0.846$, (d) Dodecahedron, $\kappa = 0.910$, and (e) Icosahedron, $\kappa = 0.940$.

Particle-laden flow solver

Fixed rigid bodies in solver

These methods can work for any particle shape.

Overall Framework in PacIFiC

Validation: Random non-spherical rigid bodies

UBC

Data generation

Summary of	parameters used	for PR-DNS of a rand	lom array of eac	ch Platonic polyhedron
at $\mathcal{R}e = 1, 10$	0, 100.			
$\overline{\phi}$	L	N_{PP}	$1/\Delta \tilde{x}$	FV grid cells

-		KB		0
0.05	$23D_{eq}$	1146	32	$\sim 399 \times 10^{6}$
0.10	$23D_{eq}$	2292	32	$\sim 399 \times 10^{6}$
0.20	$18D_{eq}$	2228	40	$\sim 373 \times 10^6$

Spatial distribution of Platonic polyhedrons in a tri-periodic box at $\phi = 0.2$.

Force and torque distributions

Distribution of normalized force and torque for flow past Platonic polyhedrons at Re = 10 and $\phi = 0.1$.

Microstructure-based Probability-driven Point-particle model

 $\Delta F_{u,DNS}$

Physics Informed Neural Network (PINN)

THE UNIVERSITY OF BRITISH COLUMBIA Chemical & Biological Engineering

SVIE

 $\tilde{F}_{y,DNS}$

Convolutional Neural Network

PINN vs. CNN

PINN																
φ	Re	Tetrahedron	'etrahedron Cube				Octahedron				Dodecahedron			Icosahedron		
	100	$ ilde{F}_x$	$\tilde{\mathbf{F}}_L$	$ ilde{\mathbf{T}}_L$	$ ilde{F}_x$	$ ilde{\mathbf{F}}_L$	$\tilde{\mathbf{T}}_L$	$ ilde{F}_x$	$\tilde{\mathbf{F}}_L$	$\tilde{\mathbf{T}}_L$	$ ilde{F}_x$	$ ilde{\mathbf{F}}_L$	$ ilde{\mathbf{T}}_L$	$ ilde{F}_x$	$\tilde{\mathbf{F}}_{L}$	$ ilde{\mathbf{T}}_L$
0.05	1	0.83	0.79	0.81	0.91	0.83	0.89	0.89	0.83	0.90	0.92	0.86	0.91	0.93	0.86	0.91
	10	0.79	0.69	0.61	0.87	0.77	0.81	0.83	0.78	0.82	0.88	0.82	0.84	0.87	0.81	0.84
	100	0.47	0.01	0.03	0.61	0.43	0.07	0.56	0.40	0.15	0.64	0.70	0.41	0.63	0.73	0.60
0.1	1	0.80	0.72	0.76	0.87	0.82	0.89	0.87	0.82	0.89	0.89	0.84	0.90	0.88	0.84	0.91
	10	0.76	0.63	0.60	0.85	0.78	0.85	0.82	0.76	0.84	0.86	0.79	0.86	0.85	0.78	0.88
	100	0.47	0.13	0.08	0.60	0.47	0.16	0.60	0.50	0.19	0.70	0.71	0.57	0.65	0.72	0.67
0.2	1	0.66	0.56	0.60	0.77	0.73	0.86	0.80	0.74	0.87	0.82	0.80	0.89	0.82	0.78	0.90
	10	0.65	0.50	0.47	0.77	0.70	0.80	0.80	0.71	0.81	0.81	0.76	0.86	0.81	0.75	0.87
224	100	0.45	0.20	0.08	0.60	0.42	0.21	0.64	0.46	0.20	0.68	0.65	0.52	0.71	0.65	0.60
			2 4 9	44/01/L	85.	1.50	250	CNN			Možis.		200	8450		.054
0.05	1	0.91	0.88	0.85	0.88	0.96	0.95	0.94	0.96	0.94	0.96	0.97	0.97	0.97	0.97	0.93
	10	0.92	0.73	0.66	0.95	0.93	0.87	0.94	0.92	0.87	0.97	0.94	0.90	0.97	0.94	0.82
	100	0.70	0.58	0.40	0.76	0.51	0.34	0.78	0.65	0.14	0.82	0.76	0.34	0.83	0.77	0.34
0.1	1	0.84	0.81	0.77	0.94	0.95	0.92	0.92	0.95	0.94	0.95	0.96	0.96	0.95	0.95	0.96
	10	0.84	0.75	0.63	0.92	0.87	0.86	0.93	0.90	0.90	0.95	0.93	0.91	0.95	0.95	0.92
	100	0.70	0.58	0.25	0.77	0.56	0.08	0.85	0.55	0.10	0.84	0.75	0.44	0.80	0.73	0.57
0.2	1	0.72	0.69	0.59	0.81	0.83	0.87	0.83	0.86	0.84	0.85	0.91	0.93	0.87	0.93	0.94
	10	0.72	0.61	0.52	0.80	0.81	0.81	0.84	0.83	0.77	0.85	0.89	0.88	0.86	0.87	0.90
	100	0.53	0.42	0.25	0.62	0.49	0.24	0.68	0.49	0.14	0.71	0.67	0.43	0.73	0.66	0.55

UBC

Relevant Publications

- Aashish Goyal and Anthony Wachs, "An accurate and scalable direction-splitting solver for flows laden with . non-spherical rigid bodies - Part 1: fixed rigid bodies", **Communication in Computational Physics** 2023
- Antoine Morente, **Aashish Goyal** and Anthony Wachs, "A Highly Scalable Direction Splitting Solver on Regular • Cartesian Grid to Compute Flow in Complex Geometries Described by STL files", Fluids 2023
- Aashish Goyal and Anthony Wachs, "An accurate and scalable direction-splitting solver for flows laden with • non-spherical rigid bodies - Part 2: moving rigid bodies", **Computers and Fluids** 2024
- Aashish Goyal, Gai Guodong, Zihao Cheng, and Anthony Wachs, "Flow past a random array of statistically • homogeneously distributed stationary Platonic polyhedrons: Data analysis, Probability maps, and PINN model", International Journal of Multiphase Flows 2024

Special Thanks !!!

Dr. Anthony Wachs UBC Chemical & Biological Engineering UBC Mathematics

Dr. Zihao Cheng UBC Mechanical

Dr. Guodong Gai UBC Mathematics

Thank you !!!

THE UNIVERSITY OF BRITISH COLUMBIA