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This report was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor 
any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any 
agency thereof.



• Reaction Subclasses:

• Pyrolysis – Heterogeneous Particle Phase

• Gasification – Homogeneous Gas Phase

Necessary to subclassify gasification for accurate kinetic modeling

Gasification of high-density polyethylene (HDPE)
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HDPE

Drying
Pyrolysis

“Primary”

Gasification

“Secondary”

• Char, Ash
• Tar (C4+)
• Light gases 

(C0-C4)



• HDPE characterized by two lumped functional groups:
• Mid-Chains (P-P)

• End-Chains (P-)

• Representative Mid Chains
• P-C20H40-P(L)

• P-C40H80-P(L)

Collaboration with CRECK Modeling Group at Politecnico di Milano

Current state of HDPE pyrolysis kinetics
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HMW (P-P) (P-) LMW Products

Image credit: A. Locaspi, et al., Waste Management 156 (2023) 107-117 



• Low-molecular weight (LMW) 
characterized by real species up 
to C5

• Larger species (C6+) described by 
lumped paraffin and olefin 
species

Current Primary Reaction Schemes:

• 71 species, 1377 reactions 
(71_1377)

• 71_969

• 42_737*

• 10_10*

Collaboration with CRECK Modeling Group at Polytechnic University of Milan

Current state of HDPE pyrolysis kinetics
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Paraffin Olefin

Mid-Chain (MC) P-C20H40-P(L)

P-C40H80-P(L)

End-Chain (EC) P-C20H41(L) P-C24H23(L)

MC radical P-C20H39-P(L)

EC internal radical P-C20H40(L) P-C24H22(L)

EC position specific 

radical

P-C20H40-T(L) P-C24H22-A(L)

Table 1. Classification of Mid- and End-Chain species for 
HDPE

*Focus of ML modeling work



• Three variables present:
• Particle species concentration

• Temperature

• Time Step

• Predict final mass fractions 
of all species for a given 
time step

• Take a single reaction:

Increase computational speed while maintaining detailed speciation

Machine learning (ML) approach for HPDE reaction 
kinetics
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A => B + C

𝑘 = 𝐴𝑇𝛽𝑒
−𝐸𝑎
𝑅𝑇

𝑑𝑋𝐴

𝑑𝑡
= 𝐴𝑇𝛽𝑒

−𝐸𝑎
𝑅𝑇 𝐶𝐴

𝑑𝑋𝑚𝑛

𝑑𝑡
=   𝑑𝑋𝑚𝑛,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 −  𝑑𝑋𝑚𝑛,𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

• Create the full set of ODEs

• Quickly becomes cumbersome 
with 700+ reactions

Conventional Approach Machine Learning Approach

𝑓 𝑋1,0, … , 𝑋𝑚𝑛, 𝑇𝑝, 𝑑𝑡 = 𝑋0,0 … 𝑋𝑚𝑛



• 1-kg pure HDPE particle

• Initial temperature: 300 K

• Max temperature: 1000 K

• Fixed heating rate:

• 5, 10, 15 K/min

• Timestep:

• 1E-6 to 1E-3 s

• 49 operating conditions

• 4+ million data points

Generate high-fidelity composition data over a range of operating conditions

Data generation for model training
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Figure 1. top) Mass fractions of liquid and gas species during HDEP conversion and bottom) 

maximum mass of each species during conversion over a range of temperatures using a 1-kg basis.



• 20 input features

• 35 output features
• Liquid and gas species

Implementation of DeepONet structure with physics-based loss functions

Architecture of the ML model
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𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐾
𝑑𝑡 = 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 (s)
𝑥𝑖 = 𝑀𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖

• Trunk Network
• Handles dt for time dependence

• Branch Network
• Temperature and species fractions



• Training and validation loss calculated 
using the mean absolute error (MAE)

• Chemical reactions must conserve mass

• Mass conservation can inform ML training

• Introduce new loss functions
• Sum of gas species (1)

• Rate of gas production (2)

• Sum of liquid species (3)

Couple mass-conservation and time-informed loss functions for training

Physics-based loss functions

8/16/2024 9

1

𝐵𝑁𝑠𝑝𝑐𝑠


𝑖=1

𝐵



𝑗=1

𝑁𝑠𝑝𝑐𝑠

𝑋𝑗
(1)

 −  𝑋𝑗
(1)

Standard MAE in PyTorch

Additional physics-informed MAE functions

1

𝐵𝑁𝑔


𝑖=1

𝐵



𝑗=1

𝑁𝑔
𝑋𝑔,𝑗

(1)

𝑑𝑡
 −

𝑋𝑔,𝑗
(1)

𝑑𝑡

1

𝐵𝑁𝑔


𝑖=1

𝐵



𝑗=1

𝑁𝑔

 𝑋𝑔,𝑗
(1)

 −  𝑋𝑔,𝑗
(1)

1

𝐵𝑁𝑙


𝑖=1

𝐵



𝑗=1

𝑁𝑙

 𝑋𝑙,𝑗
(1)

 −  𝑋𝑙,𝑗
(1)

(1)

(2)

(3)



Parity plots for the major gas and liquid species – HDPE 42_737 scheme

Predictions against training data
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Figure 2. Comparison of ML model predictions against our training data. Note: Temperature is in Kelvin (K).

C15H28 C15H30NC5H10

P-C20H40-P(L) P-C20H41(L) P-C20H39(L)



Performance of isolated ML model compared to previous MFiX results

Model inference in comparison to CFD results
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• 1-kg single HDPE Particle

• Initial Particle Temperature: 650 K

• Heating Rates of 5, 10, 20 K/min

• Time step: 1x10-3 s

Figure 3. Comparison of isolated ML model predictions against data from a similar 

MFiX single particle simulation.



C15H28 C15H30 NC5H10

P-C20H40-P(L)
P-C20H41(L) P-C20H39(L)

Model inference in comparison to CFD results
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Performance of isolated ML model compared to previous MFiX results

Figure 4. Comparison of isolated ML model predictions against data from a similar MFiX single particle simulation for the three largest species for each phase. 



Replace conventional stiff chemistry solver with the ML model

Implementation of Neural Network into MFiX
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DEM Update:

Update solid phases 

based on non-

reaction terms
Fluid Iteration:

Update gas-phase 

variables based on

non-reaction terms 

and source/sink terms 

from ML model

Stiff Solver:

Update both gas and 

solid phases based 

on reaction terms

Traditional 

MFiX:

ML + MFiX:

Fluid Iteration:

Update gas-phase 

variables based on non-

reaction terms

ML Model:

• Update solid-phase 

based on ML predictions

• Obtain source/sink terms 

for gas phase mass and 

species from ML model

ML model is integrated into MFiX to replace the stiff solver for reacting terms

• Solid phases from reactions are predicted directly by ML model

• Source/sink terms for gas phases are predicted from ML model and used in the following fluid iteration
Scheme provided by Hang Zhou. 



Testing kinetic performance in an ideal environment

Performance in a Single-Particle Simulation
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• Single, 1-kg HDPE particle

• Fixed temperature ramp

• 10 K/min

• Full particle conversion at 1600 s

• Test of kinetic performance

ML Performance:

• Error of particle mass (w.r.t initial mass):
• 0.8% average
• 9.1 % max

• Error during conversion (1100 – 1500 s):
• 3.2% average
• 9.0 % max

Figure 6. Top) Geometry setup of the MFiX simulation and bottom) 

prediction of particle mass loss compared to the stiff-solver. 



Performance in a Single-Particle Simulation
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Figure 7. Comparison of gaseous product species between traditional the traditional stiff-solver and the ML implementation in MFiX.



Performance in a Drop Tube Reactor
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Simulation settings in MFiX

• Experimental drop tube 
reactor at NETL

• Currently used as a source of 
validation for HDPE kinetics

• Higher heating rate
• ~23 K/s

• Full particle conversion at 20 s

ML Performance:

• ML was 25% faster than stiff-
solver

• Error of particle mass:
• 2.3% average
• 26 % max

Figure 8. Left) Drop tube geometry and right) 

mass loss prediction for particle in a droptube 

reactor for ML and stiff-solver

42_737 Scheme

10_10 Scheme



• Optimize the current NN to improve predictions

• Implement ML model into full scale simulations
• Fluidized bed reactors

• Adapt similar strategies for developing a NN for large secondary 
gasification schemes

• Perform detailed simulations with all kinetics (primary and secondary 
reactions) solved via ML models while achieving the same level of 
accuracy

Future Work
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