

Asynchronous GPU-based DEM solver embedded in commercial CFD software with polyhedral mesh support

Alireza Kiani Dr. Justin Lapp

Objectives

- \Box Develop an in-house Discrete Element Method (DEM) Solver
- \Box The object-oriented development of the DEM solver for particle-scale customization
- \Box High computational speed for semi-industrial application
- \Box Flexible in performing computation on complex geometries
- \Box Seamless Coupling with reliable and well-developed CFD software

Coupling with ANSYS Fluent on CPU

- \Box The solver must be compatible with ANSYS Fluent User Defined Function (UDF)
	- **The solver is developed in C language**
- \Box To compensate the slow computations of the DEM solver due to high number of particles, it is parallelized over CPU cores
- \Box The CFD and the DEM solver read the geometry and cells by CFD software
- \Box The DEM solver requires access to the CFD cell in each compute node during the simulation time
	- **Memory Mapping**

Data Structure

- \Box Another challenge: Using 2 grids for particles, and cells requires high amount of memory on GPU!
	- Solution: Use the CFD cells geometry.

 Cell_1 Cell₂ Cell₃ Cell_4 Cell_N

Memory Management

- \Box To make the solver compatible with GPU, the 3D grid for particles needs to be transferred to GPU memory.
	- There is no built-in function in NVIDIA CUDA for transferring 3D array of structures.
	- Flattening the 3D array then transferring to GPU.
	- By allocating and updating the pointer on the GPU kernel, the array can be treated as a 3D array.
- \Box All the functions must be parallelized to be compatible with the GPU architecture.
- \Box The goal is to make data transfer between GPU and CPU memories minimal for optimal performance.

 $(1, 1)$ $(1, 2)$ $(1, 3)$ $(1, 4)$ $(2, 1)$ $(2, 2)$ $(2, 3)$ $(2, 4)$ $n \times m$

Asynchronous Dynamic-Linked Library

- \Box The compiler of the DEM solver is NVIDIA CUDA which is incompatible with the ANSYS Fluent C compiler.
- \Box Thus, the DEM solver is compiled by CUDA as a Dynamic-Linked Library (DLL) which is a wrapper for the solver.
- \Box The DEM is executed asynchronously as an external function in UDF so that both CPU and GPU compute fluid and solid phases simultaneously for optimum performance.

Cortex

Host

Algorithm

- \Box The figure demonstrates the algorithm of the CFD-DEM solver.
- \Box The functions of the GPU-based DEM Solver wrapped in the DLL are shown inside the dotted line.
- \Box All of the DEM solver functions including fluid-solid interactions for momentum and heat transfer are executed on GPU.
- \Box At the end of each CFD time step, the CFD and DEM solvers wait for each other to finish their job.

START

Yes

Cells Array Copy Back to CPU

END

START DEFINE_ADJUST

Dynamic Linked Library (DEM Wrapper)

IINIVERSITY OF

Performance

- \Box The average eclipsed time of each time step of the current GPU-based DEM solver compared to Amritkar and Tafti MPI and OpenMP and He et al. GPU-based DEM solver for **1.3** millions of particles (Amritkar et al. study).
- \Box The average eclipsed time cost of the DEM solver for each time step for the GPUbased DEM solver of He et al. and the current GPU-based DEM solver for **1.0**, **2.0**, **4.0**, and **8.0** millions of particles.

Performance, Overall

 \Box The average eclipsed time of the particleparticle and particle-wall collision, time integration, and neighbor list functions. The particle-fluid force calculation is integrated into the collision function. However, particle-fluid force calculation is part of phase coupling in the He et al. solver.

Performance, Coupling

 \Box The average time for the source terms calculation of the CFD cells and the coupling process with the CFD solver. Particle-fluid force calculation is presented in the phase coupling for the He et al.'s solver based on their architecture.

Gaussian Integral Method (GIM)

$$
G_{c}(x) = \frac{V_{c}}{\sqrt{2\pi\sigma_{c}^{2}}}e^{-\frac{-(x-\mu_{c})^{2}}{2\sigma_{c}^{2}}}, \quad \sigma_{c} = \phi \left(\frac{3}{4\pi}V_{c}\right)^{1/3}
$$
\n
$$
G_{p}(x) = \frac{V_{p}}{\sqrt{2\pi\sigma_{p}^{2}}}e^{\frac{-x^{2}}{2\sigma_{p}^{2}}}, \quad \sigma_{p} = \phi r_{p}
$$
\n
$$
\chi_{Max} \cdot \chi_{min} = \frac{-\sigma_{p}^{2}\mu_{c} \pm \sqrt{\sigma_{p}^{4}\mu_{c}^{2} + \sigma_{p}^{2}\left[\mu_{c}^{2} + 2\sigma_{c}^{2}\ln\left(\frac{\sigma_{c}V_{p}}{\sigma_{p}V_{c}}\right)\right](\sigma_{c}^{2} - \sigma_{p}^{2})}}{\sigma_{c}^{2} - \sigma_{p}^{2}}
$$
\n
$$
\chi_{Max} \cdot \chi_{min} = \frac{-\sigma_{p}^{2}\mu_{c} \pm \sqrt{\sigma_{p}^{4}\mu_{c}^{2} + \sigma_{p}^{2}\left[\mu_{c}^{2} + 2\sigma_{c}^{2}\ln\left(\frac{\sigma_{c}V_{p}}{\sigma_{p}V_{c}}\right)\right](\sigma_{c}^{2} - \sigma_{p}^{2})}}{\sigma_{c}^{2} - \sigma_{p}^{2}}
$$
\n
$$
\chi_{max} \cdot \chi_{min} = \frac{-\frac{\sigma_{p}^{2}}{2\pi\sigma_{p}^{2}}\left[\frac{\sigma_{p}^{2}V_{p}}{\sigma_{p}^{2} + \sigma_{p}^{2}}\right]}{\sigma_{p}^{2} + \sigma_{p}^{2}}
$$
\n
$$
\chi_{max} \cdot \chi_{min} = \frac{-\frac{\sigma_{p}^{2}}{2\pi\sigma_{p}^{2}}\left[\frac{\sigma_{p}^{2}V_{p}}{\sigma_{p}^{2} + \sigma_{p}^{2}}\right]}{\sigma_{p}^{2} + \sigma_{p}^{2}}
$$
\n
$$
\chi_{max} \cdot \chi_{min} = \frac{-\frac{\sigma_{p}^{2}}{2\pi\sigma_{p}^{2}}\left[\frac{\sigma_{p}^{2}V_{p}}{\sigma_{p}^{2} + \sigma_{p}^{2}}\right]}{\sigma_{p}^{2} + \sigma_{p}^{2}}
$$
\n
$$
\chi_{
$$

 $V_{p,i} = \prod_{i=1}^{n} V_{p,i}$ −∞ x_{min} $G_p(x)dx$ x_{min} x_{Max} $a_c(x)dx + \int$ x_{Max} +∞
 $G_{\text{max}} G_p(x) dx = \frac{V_p}{2} \bigg[2 + \text{erf}$ χ_{min} $2\sigma_p^2$ − erf χ_{Ma} $2\sigma_p^2$ + $\frac{V_c}{\sqrt{2}}$ $\frac{1}{2}$ erf $\chi_{Max} - \mu_c$ $\left(\frac{1}{2\sigma_c^2}\right)$ – erf $\chi_{min} - \mu_c$ $2\sigma_c^2$

THE UNIVERSITY OF 1865 AINE $\sqrt{ }$

Tuning of GIM

 $V_c/V_p=8$

 $0.8\,$

 $\overline{1}$

 0.6

 -0.2

 0.2

 0.4

Immersed Tube Simulation

 \Box The geometry and hexahedral mesh of Zhou et al. (2021) simulation

(left) and polyhedral mesh of current simulation (right).

Immersed Tube Simulation, DEM

 \Box The snapshot of the particles' position for the 6 s to 9 s time of the simulation. The right-hand side is the snapshots of the Zhou et al. experiment and simulation.

Immersed Tube Simulation, CFD

 \Box The contours of the cells void fraction for the 6 s to 9 s time of the simulation on the middle plane on the domain.

 \bigcap

Publications

- □ Kianimoqadam, A., Lapp, J., 2024. **Asynchronous GPU-based DEM solver embedded in commercial CFD software with polyhedral mesh support**. *Powder Technology*, p.120040.
- Kianimoqadam, A., Lapp, J., 2024. **Gaussian integral method for void fraction**. *in progress*. arXiv:2408.00909

Thank you!

Open to thoughts and questions.

Alireza.Kianimoqadam@maine.edu

Validation

 \Box Validation against Müller et al. (2008) experimental and simulation results:

• Time-averaged particle velocity profile at heights 0.015 m (a), 0.025 m (b), and 0.035 m (c) of the bed.

Validation

 \Box Validation against Müller et al. (2009) experimental and simulation

• The time-averaged void fraction at heights 16.4 mm (a) and

 $x(m)$

 $x(m)$

Wachem et al. (2001) fluidized bed (Validation)

 parameters of Wachem et al. (2001) fluidized bed experiment (left) and grid information of simulation cases (right)

Wachem et al. (2001) fluidized bed (Validation)

- \Box The Power Spectral density of the relative pressure fluctuations as a function of frequency for the cases with optimization (A) and without optimization (B) and Wachem et al.'s experiment
- \Box Bed height fluctuation at the height of 45 mm, comparing five different simulation strategies with the experimental data from Wachem et al.

• End of Supporting slides.