

Asynchronous GPU-based DEM solver embedded in commercial CFD software with polyhedral mesh support

Alireza Kiani Dr. Justin Lapp

Objectives

- Develop an in-house Discrete Element Method (DEM) Solver
- □ The object-oriented development of the DEM solver for particle-scale customization
- □ High computational speed for semi-industrial application
- □ Flexible in performing computation on complex geometries
- □ Seamless Coupling with reliable and well-developed CFD software

Coupling with ANSYS Fluent on CPU

- The solver must be compatible with ANSYS Fluent User Defined
 Function (UDF)
 - The solver is developed in C language
- To compensate the slow computations of the DEM solver due to high number of particles, it is parallelized over CPU cores
- The CFD and the DEM solver read the geometry and cells by CFD software
- The DEM solver requires access to the CFD cell in each compute node during the simulation time
 - Memory Mapping

Data Structure

- Another challenge: Using 2 grids for particles, and cells requires high amount of memory on GPU!
 - Solution: Use the CFD cells geometry.

Cell₃ Cell₄

 $Cell_1$

 $Cell_2$

 $Cell_N$

Memory Management

- To make the solver compatible with GPU, the 3D grid for particles needs to be transferred to GPU memory.
 - There is no built-in function in NVIDIA CUDA for transferring ٠ 3D array of structures.
 - Flattening the 3D array then transferring to GPU. ٠
 - By allocating and updating the pointer on the GPU kernel, the ٠ array can be treated as a 3D array.
- All the functions must be parallelized to be compatible with the GPU architecture.
- The goal is to make data transfer between GPU and CPU memories minimal for optimal performance.

Array of structures (e.g. grid for particles) (1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4) $n \times m$ Flattened array of structures for transferring to GPU $n \times (j-1) + i$

Pointer to array of structures (updated on a GPU kernel)

2

4

Asynchronous Dynamic-Linked Library

- The compiler of the DEM solver is NVIDIA CUDA which is incompatible with the ANSYS Fluent C compiler.
- Thus, the DEM solver is compiled by CUDA as a Dynamic-Linked Library (DLL) which is a wrapper for the solver.
- The DEM is executed asynchronously as an external function in UDF so that both CPU and GPU compute fluid and solid phases simultaneously for optimum performance.

Cortex

Host

Algorithm

- □ The figure demonstrates the algorithm of the CFD-DEM solver.
- The functions of the GPU-based DEM Solver wrapped in the DLL are shown inside the dotted line.
- All of the DEM solver functions including fluid-solid interactions for momentum and heat transfer are executed on GPU.
- At the end of each CFD time step, the CFD and DEM solvers wait for each other to finish their job.

Performance

THE UNIVERSITY OF

1865

- □ The average eclipsed time of each time step of the current GPU-based DEM solver compared to Amritkar and Tafti MPI and OpenMP and He et al. GPU-based DEM solver for **1.3** millions of particles (Amritkar et al. study).
- The average eclipsed time cost of the DEM solver for each time step for the GPU-based DEM solver of He et al. and the current GPU-based DEM solver for 1.0, 2.0, 4.0, and 8.0 millions of particles.

Performance, Overall

The average eclipsed time of the particle-particle and particle-wall collision, time integration, and neighbor list functions.
 The particle-fluid force calculation is integrated into the collision function.
 However, particle-fluid force calculation is part of phase coupling in the He et al. solver.

Performance, Coupling

The average time for the source terms calculation of the CFD cells and the coupling process with the CFD solver.
 Particle-fluid force calculation is presented in the phase coupling for the He et al.'s solver based on their architecture.

Gaussian Integral Method (GIM)

$$G_{c}(x) = \frac{V_{c}}{\sqrt{2\pi\sigma_{c}^{2}}}e^{\frac{-(x-\mu_{c})^{2}}{2\sigma_{c}^{2}}}, \quad \sigma_{c} = \phi\left(\frac{3}{4\pi}V_{c}\right)^{1/3}$$

$$G_{p}(x) = \frac{V_{p}}{\sqrt{2\pi\sigma_{p}^{2}}}e^{\frac{-x^{2}}{2\sigma_{p}^{2}}}, \quad \sigma_{p} = \phi r_{p}$$

$$\xi_{p} = \frac{V_{p}}{\sum_{i=1}^{N_{c}}V_{p,i}}$$

$$g_{max}, x_{min} = \frac{-\sigma_{p}^{2}\mu_{c} \pm \sqrt{\sigma_{p}^{4}\mu_{c}^{2} + \sigma_{p}^{2}\left[\mu_{c}^{2} + 2\sigma_{c}^{2}\ln\left(\frac{\sigma_{c}V_{p}}{\sigma_{p}V_{c}}\right)\right](\sigma_{c}^{2} - \sigma_{p}^{2})}}{\sigma_{c}^{2} - \sigma_{p}^{2}}$$

 $V_{p,i} = \int_{-\infty}^{\mathcal{X}_{min}} G_p(x) dx \int_{\mathcal{X}_{min}}^{\mathcal{X}_{Max}} G_c(x) dx + \int_{\mathcal{X}_{Max}}^{+\infty} G_p(x) dx = \frac{V_p}{2} \left[2 + \operatorname{erf}\left(\frac{\mathcal{X}_{min}}{\sqrt{2\sigma_p^2}}\right) - \operatorname{erf}\left(\frac{\mathcal{X}_{Max}}{\sqrt{2\sigma_p^2}}\right) \right] + \frac{V_c}{2} \left[\operatorname{erf}\left(\frac{\mathcal{X}_{Max} - \mu_c}{\sqrt{2\sigma_c^2}}\right) - \operatorname{erf}\left(\frac{\mathcal{X}_{min} - \mu_c}{\sqrt{2\sigma_c^2}}\right) \right]$

THE UNIVERSITY OF MAINE

_

Tuning of GIM

Trendline:
$$\phi = 0.579 \left(\frac{V_p}{V_c}\right)^{0.132}$$

-0-

Immersed Tube Simulation

□ The geometry and hexahedral mesh of Zhou et al. (2021) simulation

(left) and polyhedral mesh of current simulation (right).

Simulation parameters	Notation	Value
Bed		
Width (m)	W	0.2
Transverse thickness (m)	Т	0.03
Height (m)	Н	1.0
Number of Cells (Polyhedral)		9640

Particles (glass beads)		
Number	N_p	310000
Diameter (mm)	d_p	1.5
Density (kg/m^3)	$ ho_s$	2576
Young's modulus (Pa)	Y	2.0×10^7
Poisson's ratio	υ	0.25
Coefficient of normal restitution	е	0.9
Coefficient of sliding friction	μ _s	0.3
Coefficient of rolling friction	μ_{r}	0.01
Fluid (air)		
Gas density (kg/m^3)	$ ho_f$	1.225
Gas inlet superficial velocity (m/s)	\overline{v}_{f}	1.8
Gas viscosity (Pa. s)	μ_f	1.8×10^{-5}

Immersed Tube Simulation, DEM

□ The snapshot of the particles' position for the 6 *s* to 9 *s* time of the simulation. The right-hand side is the snapshots of the Zhou et al. experiment and simulation.

Immersed Tube Simulation, CFD

 \Box The contours of the cells void fraction for the 6 *s* to 9 *s* time of the simulation on the middle plane on the domain.

Simulation parameters	Notation	Value
Bed		
Width (m)	W	0.1
Transverse thickness (m)	Т	0.021, 0.012
Height (m)	Н	0.553
Number of Cells (Polyhedral)		5792

N_p	600000
d_p	1.0
$ ho_s$	1000
Y	$1.0 imes 10^6$
υ	0.25
е	0.77
μ _s	0.3
$\mu_{\mathbf{r}}$	0.01
$ ho_f$	1.225
\overline{v}_{f}	0.4, 0.6
	N_p d_p ρ_s γ v e μ_s μ_r ρ_f \bar{v}_f

 μ_f

 1.8×10^{-5}

Publications

- Kianimoqadam, A., Lapp, J., 2024. Asynchronous GPU-based DEM solver embedded in commercial
 CFD software with polyhedral mesh support. *Powder Technology*, p.120040.
- □ Kianimoqadam, A., Lapp, J., 2024. Gaussian integral method for void fraction. *in progress*. arXiv:2408.00909

Thank you!

Open to thoughts and questions.

Alireza.Kianimoqadam@maine.edu

Validation

□ Validation against Müller et al. (2008) experimental and simulation results:

• Time-averaged particle velocity profile at heights 0.015 m (a), 0.025 m (b), and 0.035 m (c) of the bed.

Validation

□ Validation against Müller et al. (2009) experimental and simulation

• The time-averaged void fraction at heights 16.4 mm (a) and

Wachem et al. (2001) fluidized bed (Validation)

 parameters of Wachem et al. (2001) fluidized bed experiment (left) and grid information of simulation cases (right)

Grid	Grid Type	$N_w \times N_T \times N_H$	N _{cells}	$\sqrt[3]{V_{cell}}/d_p$
Name				
Grid A	structured	33 × 3 × 181	17919	1.76
Grid B	structured	$26 \times 2 \times 140$	7280	2.38
Grid D	Polyhedral	_	25605	1.56
Grid E	Polyhedral	_	17840	1.76
Grid F	Polyhedral	_	7302	2.37

Simulation parameters Nota	tion	Value
Bed		
Width (m)	W	0.09
Transverse thickness (<i>m</i>)	Т	0.008
Height (m)	Н	0.5
Particles		
Total mass (kg)	$\sum m_p$	0.039
Diameter (mm)	d_p	1.545
Density (kg/m^3)	$ ho_s$	1150
Young's modulus (Pa)	Y	1.2×10^5
Poisson's ratio	υ	0.33
Coefficient of normal restitution	е	0.9
Coefficient of sliding friction	μ _s	0.3
Fluid (air)		
Gas density (kg/m^3)	$ ho_f$	1.28
Gas inlet superficial velocity (m/s)	$\overline{\pmb{v}}_{f}$	0.9
Gas viscosity (Pa.s)	μ_{f}	1.7×10^{-5}

Wachem et al. (2001) fluidized bed (Validation)

- The Power Spectral density of the relative pressure fluctuations as a function of frequency for the cases with optimization
 (A) and without optimization (B) and Wachem et al.'s experiment
- □ Bed height fluctuation at the height of 45 mm, comparing five different simulation strategies with the experimental data from Wachem et al.

• End of Supporting slides.