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Advantages

• Selective heating is key to process intensification

• Microwave (MW) heating enhances catalyst 
activity, selectivity, and stability

• Negligible heat losses compared to traditional 
heating: >60-65% conversion efficiency

Introduction

Limitations

• High energy consumption

• Difficult to scale-up
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Maxwell’s Equations

∇ × 𝜇−1∇ × 𝐄 + 𝑖𝜔𝜎 − 𝜔2𝜖 𝐄 = 𝟎
i𝜔𝐁 = ∇ × 𝐄

𝜖 = 𝜖′ − 𝑖𝜖′′ 𝜇 = (𝜇′ − 𝑖𝜇′′)

Ability to store    

electric energy

Amount of electric 

energy that can be 

converted to heat

Ability to store 

magnetic energy

Amount of magnetic 

energy that can be 

converted to heat

Electric properties Magnetic properties

Maxwell’s Equations: Frequency Domain

𝜎 = Electric conductivity

𝜔 = Angular frequency 

𝑃 = 0.5𝜎|𝐄| + 0.5𝜔𝜖0𝜖
′′|𝐄| + 0.5𝜔𝜇0𝜇

′′|𝐇|Volumetric power dissipated:

𝐁 = 𝜇𝐇

𝜖, 𝜇, 𝜎 = 𝑓(𝜔, 𝑇, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦)
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• MFiX (fluid dynamics) and COMSOL (electromagnetics) are coupled via file input/output

• COMSOL is invoked using system() calls

Methodology

• Export MFIX 
field data (csv 
files)

𝜙

• Interpolate 𝜙

• Solve EM field

• Export field data

E, B

• Import data

• Compute |E|, 
|B|, Q

Add sources to 
MFiX

MFiX MFiX

COMSOL
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𝝐′ = 𝝐𝒈
′ 𝝓𝒈 + 𝝐𝒑

′ 𝝓𝒑



MW-Fluidized Bed
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Microwave 

source

Microwave Setup at NETL

WaveguideCavity + Reactor

• Reactor: D = 19 mm, H = 200 mm

• Bed mass = 18 g

• Input power = 100 W



MW-Fluidized Bed

Co-axial port

Cavity

Waveguide
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Reactor

COMSOL Setup

SMD

(𝜇𝑚)

Density

(g/cc)

𝜿
(W/mK)

𝑪𝒑,𝒔
(J/Kg.K)

ε’, ε'’ µ’, µ’’
σ

(S/m)

180 5.17 8 1340 12.57, 0.89 1.52, 0.31 5.4



MW-Fluidized Bed

Ug = 32 cm/s Ug = 53 cm/s
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Direction of 

electromagnetic field



• At higher velocity, the particle temperature distribution is wider with a large right tail

• The temperature increases linearly with time

Results
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Methane Pyrolysis
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Solids Gas

𝜌(𝑘𝑔/𝑚3) 2900 ~1.18

𝑉𝑖𝑛(𝑚/𝑠) 0 0.3

Tin(K) 953 953

P (Pa) - 1e+6

Y -
H2    : 0.04, 
CH4: 0.96

• Bed mass = 0.26 kg

• Adiabatic walls

• Drag-model: Gidaspow blend

• Reaction: CH4 → C + 2H2

Chemical Kinetics1

𝑅𝑐 = 𝑘𝑐𝑃𝐶𝐻4
𝑛

𝑘𝑐 = 𝐴 𝑒 Τ−𝐸𝐴 𝑅𝑇

1Jarrett, et al. IJHE 46.39 (2021): 20338-20358.



Methane Pyrolysis
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WG = 3.4 in × 1.7 in

TE10 Waveguide 

@2.45 GHz

Reactor

Horn = 2X wave guide

P (W)
𝑑𝑝(𝜇𝑚) ε’, ε'’ µ’, µ’’

σ

(S/m)

200 350 4, 0.18 1, 0 0

COMSOL Setup

Cavity



Methane Pyrolysis

Ug = 30 cm/s Ug = 50 cm/s
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Direction of 

electromagnetic field



• At lower velocity, the particle temperature distribution is wider with a large right tail

• The temperature rise is quadratic initially and linear after that

• Compared to the fluidized bed, the trends are inverted. Likely due to differences in electric field

Results
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• COMSOL and MFiX are coupled to investigate MW heating in gas-particle systems

• Investigated particle heating in reacting and non-reacting fluidized beds

• Future directions

• Validate coupling using data from fixed bed experiments

• Compare heated gas v/s wall heating v/s MW heating

• Heating from multimodal EM waves

• Couple MFiX and Elmer via Message Parsing Interface (MPI) Multiple Programs Multiple Data (MPMD) 
execution model

Summary
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