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Harris and Crighton (1994) model:
• Simplistic and cannot directly predict the 

possibility of particle clustering
• “Phenomenological” and does not have a 

physical basis
• The model is low dimensional in the feature 

space

Motivation
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• Discrete Element Method (DEM) simulations 
are performed for a two-dimensional (2D) 
fluidized bed configuration with different 
inlet velocities 

• A 2D window of size 5 cm x 5 cm is used to 
spatially sample average particulate 
properties such as volume fraction (𝜀), 
gradient of volume fraction ∇𝜀 , granular 
temperature 𝜃 , particle velocity gradient 
∇𝑢! , and the deceleration due to collisions 
𝑎

• Temporal averaging of the spatially sampled 
data is performed over 50 DEM timesteps

Sampling Data from DEM Simulations
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• Distinct dense and dilute regimes are 
observed

• Compaction of particles and high 
deceleration magnitudes are observed in 
the dense regimes

• The DEM sampled data is observed to be 
sparse and highly “mixed” in the 
parametric space

• The DEM sampled data is dependent on a 
higher dimensional input space as 
compared to the Harris & Crighton criteria

Sampling Data from DEM Simulations
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• A simple feed forward neural network (FNN), with dimensionality reduction, overfits the data
• There are no physics-based constrains to regularize the data loss (PINNs)

Need for an Informative Prior
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• Bayesian neural network (BNN) weights are 
probability distributions contrary to deterministic 
weights in FNNs

• Isotropic Gaussian probability distributions are 
used as the initial weights for the BNN

Bayesian Neural Network (BNN) Model
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• BNN weights are probability distributions contrary to 
deterministic weights in FNNs

• Isotropic Gaussian probability distributions are used 
as the initial weights for the BNN

Bayesian Neural Network (BNN) Model
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Informative Prior

Harris & 
Crighton 
Criteria

STAGE 1
q Introduce the Harris & Crighton criteria as the base 

and adjust the weight space
q This modified weight space called the informative 

prior incorporates the constraints required to 
improve the generalizability of the model



Bayesian Neural Network (BNN) Model
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STAGE 2
• Introduce DEM sampled data 
• Re-train the network with informative prior 

weight initialization
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BNN output at ∇1𝑢! = 0	
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• Approximate the true posterior weight space using 
a joint Gaussian distribution

• Use Stochastic Variational Inference (Pyro library) 
to maximize the Evidence Lower bound (ELBO)

• Iteratively “move” the informative prior weight 
space to approximate the posterior weight space

Training BNNs
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• Export the trained BNN model as a pickle 
element (Python)

• Use FTorch library to convert the Python model 
to a FORTRAN readable format

• Design User Defined Functions (UDFs) to 
compute model input arguments for the model 
and link the model output to the original MFiX 
solver

• Develop physical limiters for computational 
stability of the new model

Incorporating ML Model in MFiX (Work in 
Progress)
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Export the trained BNN

Use FTorch library to 
convert pickle 

element to FORTAN 
readable format

Develop physical limiters



Summary

13

pyTorch/pickle

FTorch library

MFiX

1) Sampling spatially and 
temporally averaged 

data from DEM 
simulations

2) Combining Harris & 
Crighton criteria with 

sampled datapoints using 
Bayesian approach 

3) Incorporating 
trained BNN model in 

MFiX code
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• The neural network architecture has two sections. Dimensionality reduction is used to map the high-
dimensional parametric space to a lower dimensional representation in the latent space. This 
dimensionality reduction improves the convergence of the feed-forward network in the second 
stage.

Backup Slides: Network Model
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Stage 1:  Input space 
dimensionality reduction 
Linear/Non-linear latent 
space 

Stage 2:  Non-linear mapping 
from latent space to target 
term



Backup Slides: Dimensionality Reduction
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An auto-regressor architecture is used to map the scaled high dimensional parametric space to a non-linear 
latent space 𝑧 	of three-dimensions. The encoder-decoder architecture represents the input data with ~ 88% 
accuracy and hence the lower dimensional latent space is a reasonable representation of the high dimensional 
input space.
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Mapping of the input space 
to non-linear latent space 
using auto-regressor 



Backup Slides: Learning

• Better predictability than directly applying a feed-forward 
neural network on the “raw” data

• Underpredicts the dense/compact regime collision term
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Backup Slides: Mapping BNN Weights onto a 
“Deterministic” Network 

Weights of an 
informative prior

Weights Bayesian 
posterior
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• The weight space in a BNN is probabilistic 
represented by a joint pdf 

• We have used guides or approximations to 
represent the weight space as a combination of 
multiple uncorrelated Gaussians 

• This facilitates the use of two parameters mean 𝝁 
and standard deviation 𝝈 (X # of weights) to 
represent the entire weight space

• Since FTorch library is not compatible with a 
probabilistic network, we have to convert the BNN 
as a deterministic network by mapping the mean 
𝝁	of the BNN weight space
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