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 Chemically reacting flows are prevalent in a wide range of

reactors employed in a variety of applications: gas turbines,

IC engines, gasification systems, etc.

 Computational fluid dynamics (CFD) simulation-driven virtual

design analysis can aid the development of these advanced

reactors, while saving costs associated with experimental

prototyping

 CFD simulations of full-scale reactor configurations with

detailed fuel kinetics are compute-intensive due to large

number of grid points and transport equations with stiff

chemical source terms for multiple reactive species evolving

over disparate spatio-temporal scales

 Solving for detailed chemistry presents a major bottleneck in

the application of combustion CFD for comprehensive

parametric analysis and results in prolonged design cycles

MOTIVATION

Gas turbines

IC engines



ChemNODE: BASIC APPROACH

ℒ = 𝜳− ෡𝜳
2

2

ⅆ𝜳

ⅆ𝑡
= ሶ𝝎𝛹 𝜳 , 𝜳 = 𝑇,𝐻2, 𝑂2, …

𝑻

A chemically reacting system (with no diffusion or convective transport) is given by:

We can replace the computation of ሶ𝝎𝛹 using a neural network, 𝒩(𝜳;𝜽), which learns to predict the source terms 

as functions of the thermochemical state of the system

Conventional Data-driven Learning Approach

Train a neural network to minimize the difference between the predicted and actual source terms:

ChemNODE Approach

Train a neural network to obtain a source term that leads to small difference between actual and predicted 

ODE solutions:

ℒ = ሶ𝝎𝛹 −𝒩(𝜳;𝜽)
2

2

 Prone to unstable solution during deployment

 Combines data-driven learning and numerical validation phases in a 

robust integrated framework

Owoyele & Pal, Energy and AI, 2021

𝒩(𝜳;𝜽) 𝜳

Amenable to variable time-stepping
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ⅆ𝒚

ⅆ𝑡
= ሶ𝜔

𝜌

ෝ𝒚(𝒕) = 𝒚𝒐 + ∫𝒈 ො𝑦; 𝜽 𝑑𝑡
𝑑ෝ𝒚

𝑑𝑡
= g(ො𝑦; 𝜃)

Forward pass constitutes solving the ODEs using NN-predicted source terms

Governing equations

Model

Ground truth, 𝒚
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The deep learning framework is developed

in Julia programming language widely used

for scientific machine learning (SciML)

Owoyele & Pal, Energy and AI, 2021

ChemNODE: BASIC APPROACH
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The deep learning framework is developed

in Julia programming language widely used

for scientific machine learning (SciML)

Owoyele & Pal, Energy and AI, 2021

Backprop to optimize NN weights

ℒ = 𝒚 − ෝ𝒚 2
2

ChemNODE: BASIC APPROACH
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 Ground truth data was generated from 0D homogenous constant pressure hydrogen-air

reactor at 1 atm using Cantera

 Baseline detailed kinetic mechanism with 9 species and 19 reactions [O’Conaire et al.

2004]

 Initial temperature (Ti) range of 1000-1200K and equivalence ratio (Φ) range of 0.5-1.5

considered; 50 points were sampled from each time series; 30 time series in total

 Single NN with two hidden layers (48 neurons each); 9 inputs/outputs; tanh activation

function for each hidden layer; NN outputs were scaled by the maximum source term

values from the dataset

 An implicit–explicit solver available in Julia used for ODE integration during training

 2nd order Levenberg-Marquardt (L-M) optimizer used to minimize loss function:

𝐿𝑀𝑆𝐸 =
1

𝑁
෍

𝑖=1

𝑁
𝐲 − ෝ𝒚

𝒚𝒎𝒂𝒙 − 𝒚𝒎𝒊𝒏

2

CASE STUDY: H2-AIR AUTOIGNITION 

y= log(𝑇), log(𝑌𝐻2 ), . . , log(𝑌𝐻2𝑂2 )
𝑻

Kumar et al., NeurIPS ML for Physical Sciences, 2023
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PHYSICS-ENHANCED LOSS FUNCTION 

 Adding error in elemental mass fractions to the

loss function improves training efficiency

𝐿𝑃ℎ𝑦−𝐶ℎ𝑒𝑚𝑁𝑂𝐷𝐸 = 𝐿𝑂𝐷𝐸 + 𝜆1𝐿𝑒𝑙𝑒−𝐻 + 𝜆2𝐿𝑒𝑙𝑒−𝑂

𝐿𝑂𝐷𝐸 =
1

𝑁
෍

𝑖=1

𝑁
𝚿𝐢 − ෢𝚿𝐢

𝚿𝒎𝒂𝒙 −𝚿𝒎𝒊𝒏

2

𝐿𝑒𝑙𝑒−𝐻 =෍

𝑖=1

𝑁

log 1 + ෍

𝑘

𝑁𝑠
𝑁𝐻
𝑘𝑀𝑊𝐻

𝑀𝑊𝑘
𝑌𝑘,𝑖 − ෢𝑌𝑘,𝑖

2

𝐿𝑒𝑙𝑒−𝑂 =෍

𝑖=1

𝑁

log 1 + ෍

𝑘

𝑁𝑠
𝑁𝑂
𝑘𝑀𝑊𝑂

𝑀𝑊𝑘
𝑌𝑘,𝑖 − ෢𝑌𝑘,𝑖

2

𝜆1 = 3, 𝜆2= 3

Kumar et al., NeurIPS ML for Physical Sciences, 2023



Markers: Cantera-PhyChemNODE

Solid lines: Ground truth (Cantera)

Phy-ChemNODE: H2-AIR AUTOIGNITION
A-posteriori studies

Kumar et al., NeurIPS ML for Physical Sciences, 2023Inference speedup : ~3X over H2/air detailed chemical mechanism 



 Better total and elemental mass conservation for PC-NODE 

Kumar et al., NeurIPS ML for Physical Sciences, 2023

Phy-ChemNODE: H2-AIR AUTOIGNITION
A-posteriori studies
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𝐿 = ො𝑦 − 𝑦
1
+ 𝜓(𝜙 𝑦 ) − 𝑦

1

 Combining dimensionality reduction 

with latent space dynamics learning  

– Encoder-Decoder for mapping to 

and from latent space

– NeuralODE to capture dynamics 

in the reduced latent space

 Trained by combining the prediction 

loss, mapping loss, and element 

conservation loss

Encode

Decode

Integrate in 

latent space

𝐿𝑡𝑜𝑡𝑎𝑙
= 𝐿 + 𝜆1𝐿𝑒𝑙𝑒−1 + 𝜆2𝐿𝑒𝑙𝑒−2 …+ 𝜆3𝐿𝑒𝑙𝑒−𝑛

Kumar et al., AIAA SciTech 2025 (submitted)

Kumar et al., CSSCI 2024

EXTENSION TO HYDROCARBON CHEMISTRY 
Learning Dynamics in Latent Space using Autoencoder-NeuralODE
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𝐿 = ො𝑦 − 𝑦
1
+ 𝜓(𝜙 𝑦 ) − 𝑦

1

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 + 𝜆1𝐿𝑒𝑙𝑒−𝐻 + 𝜆2𝐿𝑒𝑙𝑒−𝑂 + 𝜆3𝐿𝑒𝑙𝑒−𝐶

Markers: PC-AENODE

Solid lines: Ground truth (Cantera) 32-species, 266-rxns FFCM-1 mechanism

 Training data based on 0D constant pressure 

homogeneous autoignition of methane-oxygen 

mixture at 20 bar for φ = 1-1.3 and Ti = 1600-2000 K

 Ground truth data generated for 63 initial conditions 

 Explicit Solver used to integrate the NeuralODE, 

BackwardAdjoint sensitivity to calculate the 

gradients 

 ADAM optimizer with learning rate decay

 Mean absolute error (MAE) used as the loss function

 Encoder-Decoder

 5 Hidden layers, 64 Neurons, ELU activation

 NeuralODE

 4 Hidden layers, 64 Neurons, ELU activation

~10X over full chemical mechanism 

EXTENSION TO HYDROCARBON CHEMISTRY 
Phy-ChemNODE demonstration for methane combustion kinetics

Kumar et al., AIAA SciTech 2025 (submitted)Kumar et al., CSSCI 2024



 0D constant pressure autoignition mimicked in CONVERGE CFD solver as a 3D single

cell problem with edge length 𝑙 = 100 𝜇𝑚

 Homogeneous temperature and species mass fractions are specified as initial

conditions in the box

 Boundary conditions:

– 𝒙+: Dirichlet for pressure, zero gradient for temperature, species and velocities

– 𝒙−, 𝒚+, 𝒚−, 𝒛+, 𝒛−: Symmetry boundary conditions for pressure, temperature,

species, and velocities

Kumar et al., arXiv:2312.00038, 2023

Ti = 1000 K

Hydrogen-air case

A-POSTERIORI Phy-ChemNODE+CFD TESTS
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𝜙 = 0.5
Ti = 1000 K

𝜙 = 1.5
Ti = 1000 K

Comparison of elemental mass fractions (hydrogen-air case)

A-POSTERIORI Phy-ChemNODE+CFD TESTS

Kumar et al., arXiv:2312.00038, 2023



Extrapolation tests (hydrogen-air case)

A-POSTERIORI Phy-ChemNODE+CFD TESTS

Kumar et al., arXiv:2312.00038, 2023



A-POSTERIORI Phy-ChemNODE+CFD TESTS
Extrapolation tests: Elemental mass conservation (hydrogen-air case)

Kumar et al., arXiv:2312.00038, 2023



ONGOING WORK

 Scaling of Phy-ChemNODE training to wider range of initial conditions and larger gas-phase kinetic

mechanisms (~O(100) species))

 Demonstration studies for 3D CFD simulations of full-scale gas turbine combustors

 Coupling of Phy-ChemNODE with Argonne’s GPU-capable CFD solver NekRS

Phy-ChemNODE framework is general: (1) can be applied to other types of chemistry (e.g.,

biomass pyrolysis kinetics); (2) can be coupled with different CFD solvers
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