2024 NETL Workshop on Multiphase Flow Science Aug 13th, 2024

Phy-ChemNODE: A Physics-enhanced Neural Ordinary Differential Equations Approach for Accelerating Stiff Chemical Kinetic Computations

Pinaki Pal, Tadbhagya Kumar, Anuj Kumar

Department of Advanced Propulsion and Power Transportation and Power Systems Division Argonne National Laboratory

ACKNOWLEDGMENTS

Fossil Energy and Carbon Management

Fund (TCF) Program *Advanced Turbines Program* Bob Schrecengost (Program Manager) Mark Freeman (Project Manager)

TECHNOLOGY TRANSITIONS

Technology Commercialization

Peter Kelly Senecal Daniel Probst Shuaishuai Liu

Opeoluwa Owoyele (former postdoc)

MOTIVATION

- Chemically reacting flows are prevalent in a wide range of reactors employed in a variety of applications: gas turbines, IC engines, gasification systems, etc.
- Computational fluid dynamics (CFD) simulation-driven virtual design analysis can aid the development of these advanced reactors, while saving costs associated with experimental prototyping
- CFD simulations of full-scale reactor configurations with detailed fuel kinetics are compute-intensive due to large number of grid points and transport equations with stiff chemical source terms for multiple reactive species evolving over disparate spatio-temporal scales
- Solving for detailed chemistry presents a major bottleneck in the application of combustion CFD for comprehensive parametric analysis and results in prolonged design cycles

Gas turbines

IC engines

ChemNODE: BASIC APPROACH

A chemically reacting system (with no diffusion or convective transport) is given by:

 $d\Psi$ $\frac{d\mathbf{r}}{dt} = \dot{\boldsymbol{\omega}}_{\boldsymbol{\psi}}(\boldsymbol{\varPsi}), \quad \boldsymbol{\varPsi} = [T, H_2, O_2, ...]^T$ $\Psi \in \mathbb{C}$ is \mathbb{C} \mathbb{R} \rightarrow $\mathcal{N}(\Psi; \theta)$

We can replace the computation of $\dot{\omega}_\psi$ using a neural network, $\mathcal{N}(\Psi;\theta)$, which learns to predict the source terms as functions of the thermochemical state of the system \rightarrow **Amenable to variable time-stepping**

Conventional Data-driven Learning Approach

Train a neural network to minimize the difference between the predicted and actual source terms:

 $\mathcal{L} \equiv \left\| \dot{\bm{\omega}}_{\bm{\mathcal{Y}}} - \mathcal{N}(\bm{\mathcal{Y}};\bm{\theta}) \right\|_2 \quad \Rightarrow$ Prone to unstable solution during deployment 2

ChemNODE Approach

Train a neural network to obtain a source term that leads to small difference between actual and predicted ODE solutions:

$$
\mathcal{L} = \left\| \boldsymbol{\varPsi} - \widehat{\boldsymbol{\varPsi}} \right\|_2^2
$$

 Combines data-driven learning and numerical validation phases in a robust integrated framework

ChemNODE: BASIC APPROACH

Forward pass constitutes solving the ODEs using NN-predicted source terms

ChemNODE: BASIC APPROACH

Backprop to optimize NN weights

CASE STUDY: H² -AIR AUTOIGNITION

- Ground truth data was generated from 0D homogenous constant pressure hydrogen-air reactor at 1 atm using Cantera
- Baseline detailed kinetic mechanism with 9 species and 19 reactions [O'Conaire *et al*. 2004]
- Initial temperature (*T_i*) range of 1000-1200K and equivalence ratio (Φ) range of 0.5-1.5 considered; 50 points were sampled from each time series; 30 time series in total
- Single NN with two hidden layers (48 neurons each); 9 inputs/outputs; *tanh* activation function for each hidden layer; NN outputs were scaled by the maximum source term values from the dataset
- An implicit–explicit solver available in Julia used for ODE integration during training
- 2nd order Levenberg-Marquardt (L-M) optimizer used to minimize loss function:

$$
L_{MSE} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\mathbf{y} - \hat{\mathbf{y}}}{\mathbf{y}_{max} - \mathbf{y}_{min}} \right)^2 \mathbf{y} = \left[\log(T), \log(Y_{H_2}), \ldots, \log(Y_{H_2O_2}) \right]^T
$$

PHYSICS-ENHANCED LOSS FUNCTION

 Adding error in elemental mass fractions to the loss function improves training efficiency

$$
L_{Phy-ChemNODE} = L_{ODE} + \lambda_1 L_{ele-H} + \lambda_2 L_{ele-O}
$$

$$
L_{ODE} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\Psi_i - \widehat{\Psi_i}}{\Psi_{max} - \Psi_{min}} \right)^2
$$

$$
L_{ele-H} = \sum_{i=1}^{N} \left(\log \left(1 + \left| \sum_{k}^{N_S} \frac{N_H^k M W_H}{M W_k} \left(Y_{k,i} - \widehat{Y_{k,i}} \right) \right| \right) \right)
$$

$$
L_{ele-O} = \sum_{i=1}^{N} \left(\log \left(1 + \left| \sum_{k}^{N_S} \frac{N_O^k M W_O}{M W_k} \left(Y_{k,i} - \widehat{Y_{k,i}} \right) \right| \right) \right)
$$

$$
\lambda_1 = 3, \quad \lambda_2 = 3
$$

 $-MSE$ **PC-NODE** 10^{-1} Loss 10^{-2} 500 1000 Ω 1500 2000 2500 Epochs

2

2

Phy-ChemNODE: H² -AIR AUTOIGNITION A-posteriori studies

Markers: Cantera-PhyChemNODE **Solid lines: Ground truth (Cantera)**

Inference speedup : ~3X over H₂/air detailed chemical mechanism

/air detailed chemical mechanism Kumar et al., *NeurIPS ML for Physical Sciences,* 2023

Phy-ChemNODE: H² -AIR AUTOIGNITION A-posteriori studies

Better total and elemental mass conservation for PC-NODE

EXTENSION TO HYDROCARBON CHEMISTRY

Learning Dynamics in Latent Space using Autoencoder-NeuralODE

- Combining dimensionality reduction $\left| \frac{dY_k}{dt} = \frac{\dot{\omega}_k}{\rho}, \quad k = 1, 2, 3, ..., N_s \right|$ with latent space dynamics learning
	- **Encoder-Decoder** for mapping to and from latent space
	- **NeuralODE** to capture dynamics in the reduced latent space
- Trained by combining the prediction loss, mapping loss, and element conservation loss

 $L = ||\hat{y} - y||_1 + ||\psi(\phi(y)) - y||_1$

 L_{total} $= L + \lambda_1 L_{\rho}$ _{ϕ -1} + $\lambda_2 L_{\rho}$ _{ϕ -2} ... + $\lambda_3 L_{\rho}$ _{ϕ -n}

EXTENSION TO HYDROCARBON CHEMISTRY

Phy-ChemNODE demonstration for methane combustion kinetics

- **32-species, 266-rxns** FFCM-1 mechanism **and the strath and the set of the species of Solid lines:** Ground truth (Cantera)
- Training data based on 0D constant pressure homogeneous autoignition of methane-oxygen mixture at 20 bar for $φ = 1-1.3$ and $T_i = 1600-2000$ K
- Ground truth data generated for 63 initial conditions
- **Explicit Solver** used to integrate the NeuralODE, **BackwardAdjoint** sensitivity to calculate the gradients
- **ADAM** optimizer with learning rate decay
- Mean absolute error (MAE) used as the loss function
- **Encoder-Decoder**
	- \geq 5 Hidden layers, 64 Neurons, ELU activation
- **NeuralODE**
	- \geq 4 Hidden layers, 64 Neurons, ELU activation

 $L = ||\hat{y} - y||_1 + ||\psi(\phi(y)) - y||_1$

 $L_{total} = L + \lambda_1 L_{ele-H} + \lambda_2 L_{ele-O} + \lambda_3 L_{ele-C}$

~10X over full chemical mechanism

Kumar et al., CSSCI 2024 Kumar et al., AIAA SciTech 2025 (submitted)

Markers: PC-AENODE

Hydrogen-air case

- 0D constant pressure autoignition mimicked in CONVERGE CFD solver as a 3D single cell problem with edge length $l = 100 \ \mu m$
- Homogeneous temperature and species mass fractions are specified as initial conditions in the box
- **Boundary conditions:**
	- x^+ : Dirichlet for pressure, zero gradient for temperature, species and velocities
	- x^-, y^+, y^-, z^+, z^- : Symmetry boundary conditions for pressure, temperature, species, and velocities

Comparison of elemental mass fractions (hydrogen-air case)

Extrapolation tests (hydrogen-air case)

Extrapolation tests: Elemental mass conservation (hydrogen-air case)

ONGOING WORK

- Scaling of Phy-ChemNODE training to wider range of initial conditions and larger gas-phase kinetic mechanisms (~*O*(100) species))
- Demonstration studies for 3D CFD simulations of full-scale gas turbine combustors
- Coupling of Phy-ChemNODE with Argonne's GPU-capable CFD solver NekRS

Phy-ChemNODE framework is general: (1) can be applied to other types of chemistry (e.g., biomass pyrolysis kinetics); (2) can be coupled with different CFD solvers

PUBLICATIONS

- T. Kumar, A. Kumar, and P. Pal, "A physics-constrained autoencoder-neuralODE framework for learning complex hydrocarbon fuel chemistry", *AIAA SciTech Forum*, 2025 (submitted).
- T. Kumar, A. Kumar, and P. Pal, "A physics-constrained autoencoder-neuralODE framework for learning complex hydrocarbon fuel chemistry: Methane combustion kinetics", *Spring Technical Meeting of the Central States of the Combustion Institute*, Cleveland, USA, 2024.
- T. Kumar, A. Kumar, and P. Pal, "A posteriori evaluation of a physics-constrained neural ordinary differential equations approach coupled with CFD solver for modeling of stiff chemical kinetics", ArXiv, 2023. *https://arxiv.org/abs/2312.00038v3.*
- T. Kumar, A. Kumar, and P. Pal, "A physics-constrained neuralODE approach for robust learning of stiff chemical kinetics", *NeurIPS Machine Learning and the Physical Sciences (ML4PS) Workshop*, New Orleans, USA, 2023.
- P. Pal, "Machine learning tools for accelerating simulation-driven engine design and optimization", *20th International Conference on Flow Dynamics (ICFD)*, Sendai, Miyagi, Japan, 2023.
- O. Owoyele and P. Pal, "ChemNODE: A neural ordinary differential equations framework for efficient chemical kinetics solvers", *Energy and AI*, Vol. 7, 2021.

THANK YOU

pal@anl.gov

