2024 NETL Workshop on Multiphase Flow Science Aug 14th, 2024

ActivO:A Novel Active Machine Learning Framework for Rapid Simulation-driven Design Optimization

Pinaki Pal

<u>Senior Research Scientist</u> Department of Advanced Propulsion and Power Transportation and Power Systems Division Argonne National Laboratory

Software Copyright, SF-19-165

U.S. patent, ANL-IN-19-103 (pending)

SIMULATION-DRIVEN DESIGN OPTIMIZATION

CHALLENGES OF SIMULATION-DRIVEN DESIGN

Competing objectives

Large multidimensional design spaces (10-20+ control variables) Highly multi-modal and non-convex response surfaces

CFD simulations can be time-consuming & costly

SIMULATION-DRIVEN DESIGN OPTIMIZATION

Conventional approaches

EXPLORATION vs EXPLOITATION OF DESIGN SPACE

5

ActivO: COMBINING STRONG AND WEAK LEARNERS

- Weak learner gives information about where the promising regions are
- Strong learner provides local surface topology within the promising region

ActivO WORKFLOW

SELECTION OF PROMISING CANDIDATES BY THE WEAK LEARNER

REFINEMENTS (STRONG LEARNER)

ActivO: DYNAMIC EXPLORATION-EXPLOITATION

Stage 3: intensive exploitation (50/50) Stage 2: balanced exploration-exploitation (75/25)

Stage 1: Full exploration (100/0)

The basic idea is to explore "more" in the earlier phases of the optimization process and exploit "more" later as we collect more information

- At the beginning, define several monitor points (M) all over the design surface (M >> N)
- At each iteration, determine the prediction of the weak learner at each of these monitor points, Φ
- Determine the maximum change in the weak learner predictions for monitor points within promising regions:

$$\omega^{i} = \max \left| 100 \times \frac{\Phi^{i} - \Phi^{i-1}}{\Phi^{i-1}} \right| \%$$

- This maximum change is defined as ω
- ω gives a measure of how much the weak learner predictions close to the projected global optimum are changing
- If ω increases above 5%, explore more; if it is decreasing, increase exploitation
- Convergence is assumed to occur if ω remains below 5% and the improvement in the best fitness is less than ϵ for 5 successive iterations

CANONICAL 2D OPTIMIZATION TEST CASE

OPTIMIZATION RESULTS

Merit values based on average across 25 trials

- ActivO is ~6 times faster than µGA and ~3 times faster than PSO
- ActivO is more robust than μ GA and PSO

COSINE MIXTURE FUNCTION TEST CASE

$$z = 0.1 \left(\cos 5\pi x + \cos 5\pi y \right) - \left(x^2 + y^2 \right)$$
$$x \in [-1, 1], y \in [-1, 1]$$

Objective is to maximize z

Maximum z = 0.2) occurs at x = y = 0

COSINE MIXTURE FUNCTION TEST CASE

After convergence of ActivO

ActivO is compared against 5 state-of-the-art optimizers:

- I. Micro-genetic Algorithm (μ GA)
- 2. Particle Swarm Optimizer (PSO)
- 3. Differential Evolution (DE)
- 4. Genetic Optimization using Derivatives (GENOUD)
- 5. Basin Hopping (BH)

OPTIMIZATION RESULTS

Owoyele & Pal, Applied Energy, 2021

٠

٠

Argonne

PSO, DE, and GENOUD converge prematurely and fail to reach the global optimum

ActivO converges to the global optimum much faster than all the other optimizers

CFD-DRIVEN IC ENGINE OPTIMIZATION TEST CASE

- Optimization of a heavy-duty engine operating on a gasoline-like fuel at a medium load condition
- Nine-dimensional design space

Notation	Input Parameter	min	max	units
nNoz	Number of Nozzle holes	8	10	-
TNA	Total Nozzle Area	I	1.3	-
Pinj	Injection Pressure	1400	1800	bar
SOI	Start of injection timing	-	-7	dATDC
Nang	Nozzle Inclusion Angle	73	83	deg
EGR	EGR fraction	0.35	0.5	-
Tivc	IVC temperature	323	373	К
Pivc	IVC pressure	2.0	2.3	bar
SR	Swirl Ratio	-2.4	- 1	-

$$Merit = 100 * \begin{cases} \frac{160}{ISFC} - f(PMAX) - f(MPRR) \\ f(SOOT) - f(NO_x) \end{cases}$$

$$f(PMAX) = 100 \begin{cases} \frac{PMAX}{220} - 1, \text{ if } PMAX > 220\\ 0, \text{ if } PMAX \le 220 \end{cases}$$

$$f(MPRR) = 10 \begin{cases} \frac{MPRR}{15} - 1, \text{ if } MPRR > 15\\ 0, \text{ if } MPRR \le 15 \end{cases}$$

$$f(SOOT) = \begin{cases} \frac{SOOT}{0.0268} - 1, & \text{if } SOOT > 0.0268\\ 0, & \text{if } SOOT \le 0.0268 \end{cases}$$

$$f(NO_x) = \begin{cases} \frac{NO_x}{1.34} - 1, & \text{if } NO_x > 1.34\\ 0, & \text{if } NO_x \le 1.34 \end{cases}$$

oromo

Shape optimization and multiple loads can also be incorporated (ASME JERT-20-1594, SAE 2020-01-1313)

OPTIMIZATION RESULTS

- ActivO lowers computational expense from 117,000 core hours to 20,000 core hours (over 80% decrease)
- ActivO shows 5-7X speedup (from 2 months to less than 2 weeks) over CONVERGE's µGA algorithm

OPTIMIZATION RESULTS

• 8 CFD simulations/design iteration

- Number of CFD simulations it takes to reach a merit value of 104.0:
 88 for ActivO vs 464 for µGA
- Maximum merit value reached:
 - \circ 104.14 for ActivO vs 104.0 for μ GA

CFD-ActivO DESIGN OPTIMIZATION

Multi-parameter optimization of turbulent mixer geometry

Automatic geometry morphing for the new design parameter sets obtained from ActivO

ActivO Active ML optimization tool

Turbulent jet mixer geometry

Donut baffles

Packed her

10-parameter design space

 $MF = \frac{entrained \,\%_{ref}}{entrained \,\%} + \frac{mixing \,time}{mixing \,time_{ref}} + f(\tau_{bub})$

Evaluate the performance of mixer

designs (multi-parameter)

Generate new promising sets of

design parameters

Argonne collaborators: Lorenzo Nocivelli, Katherine Asztalos Dow Collaborators: Chi-Wei Tsang, Mehdi Khalloufi

Multiphase L-E CFD simulations

Asztalos et al., APS-DFD, 2023

Asztalos et al., APS-DFD, 2024

SUMMARY

- An adaptive surrogate-based active ML optimization algorithm (ActivO) was developed that uses a weak learner for exploration and a strong learner for exploitation of the design space
- A mechanism for dynamically adjusting the balance between exploration and exploitation, as well as a method for assessing convergence was incorporated
- ActivO was also shown to converge significantly faster to the design optimum compared to state-of-the-art optimization algorithms; this leads to significant savings in the design time and associated computational cost
- Demonstration studies have been performed for optimization of IC engines and turbulent jet mixers wherein ActivO was coupled with CONVERGE and OpenFOAM CFD solvers, respectively
- The self-contained and automated ActivO software can be readily interfaced with any CFD code of interest for performing a wide range of design optimization campaigns

Future work

- Incorporation of uncertainty-based robust optimization strategies to account for perturbations and/or manufacturing tolerances in the design parameters
- Parallelized workflows for large-scale optimization campaigns via coupling with SmartSim

PUBLICATIONS & PRESENTATIONS

- O. Owoyele and P. Pal, "A novel machine learning-based optimization algorithm (ActivO) for accelerating simulation-driven engine design", *Applied Energy*, Vol. 285, pp. 116455, 2021.
- O. Owoyele and P. Pal, "A novel active optimization approach for rapid and efficient design space exploration using ensemble machine learning", *Journal of Energy Resources Technology*, Vol. 143(3), pp. 032307, 2020.
- K.J. Asztalos, L. Nocivelli, P. Pal, C-W. Tasang, and M. Khalloufi, "An end-to-end framework coupling CFD and active machine learning optimizer (ActivO) for rapid simulation-driven design of turbulent jet mixers", 76th Annual Meeting of the APS Division of Fluid Dynamics, 2023.
- K.J. Asztalos, L. Nocivelli, P. Pal, C-W. Tasang, and M. Khalloufi, "Design optimization of turbulent jet mixers utilizing active machine learning optimization (ActivO)", 77th Annual Meeting of the APS Division of Fluid Dynamics, 2024 (submitted).

THANK YOU

pal@anl.gov

