
ActivO: A Novel Active Machine 
Learning Framework for Rapid 
Simulation-driven Design 
Optimization

Pinaki Pal

Senior Research Scientist
Department of Advanced Propulsion and Power
Transportation and Power Systems Division
Argonne National Laboratory

U.S. patent,  ANL-IN-19-103 (pending)Software Copyright, SF-19-165

2024 NETL Workshop on Multiphase Flow Science

Aug 14th, 2024



CFD Optimizer

SIMULATION-DRIVEN DESIGN OPTIMIZATION



CHALLENGES OF SIMULATION-DRIVEN DESIGN

Competing objectives 

Large multidimensional design spaces (10-20+ control variables)

Highly multi-modal and non-convex response surfaces

CFD simulations can be time-consuming & costly
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Conventional approaches

SIMULATION-DRIVEN DESIGN OPTIMIZATION

Design of Experiments (DoE)
Sequential evolutionary algorithms

(Genetic algorithm (GA), particle 

swarm optimization (PSO), etc.)

Quadratic regression

y=Ax2+Bx+C

CFD data
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exploitation

exploration

Wasteful; would take longer than needed to 

reach optimum

The optimizer may converge prematurely

exploration

exploitation

explorationexploitation

Balanced! Converges to global 

optimum quickly

EXPLORATION vs EXPLOITATION OF DESIGN SPACE

• Which value of x (design variables) should we run the 

next batch of simulations?

• Goal: Reach global optimum in as few calls to f(x) as 

possible
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Strong LearnerWeak Learner

• Weak learner gives information about where the promising regions are

• Strong learner provides local surface topology within the promising region 

ActivO: COMBINING STRONG AND WEAK LEARNERS
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ActivO WORKFLOW

Obtain p

points with 

merit 

values in 

top kth 

percentile

Obtain (N – p)

points by 

running global 

optimizer

Feedback new 

points to function

Perform N function 

evaluations (or 

CFD simulations)

Exploration

Exploitation

Weak learner
(SVR, BFM, etc.)

Strong learner

(Committee Machine, RF, XGBoost, etc.)

Owoyele & Pal, Applied Energy, 2021
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SELECTION OF PROMISING CANDIDATES BY THE WEAK LEARNER

Owoyele & Pal, Applied Energy, 2021

Design space exploration

Smart sampling



REFINEMENTS (STRONG LEARNER)

Single ANN

input prediction

Committee Machine

ANN1 ANN2 ANN M

Overall prediction

. . .  

more robust

𝜑(𝑥) = ൘෍

𝑖=1

𝑀

𝜑𝑖 𝑀

Owoyele & Pal, Applied Energy, 2021

False optimum is gone

True optimum remains
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ActivO: DYNAMIC EXPLORATION-EXPLOITATION

Stage 3: intensive exploitation (50/50)

Stage 2: balanced exploration-exploitation 

(75/25)

Stage 1: Full exploration (100/0)
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• At the beginning, define several monitor points (M) all 

over the design surface (M >> N)

• At each iteration, determine the prediction of the weak 

learner at each of these monitor points, Φ
• Determine the maximum change in the weak learner 

predictions for monitor points within promising regions: 

𝜔𝑖 = max 100 ×
Φ𝑖 −Φ𝑖−1

Φ𝑖−1
%

• This maximum change is defined as ω

• ω gives a measure of how much the weak learner 

predictions close to the projected global optimum are 

changing

• If ω increases above 5%, explore more; if it is decreasing, 

increase exploitation

• Convergence is assumed to occur if ω remains below 5% 

and the improvement in the best fitness is less than ε for 

5 successive iterations

The basic idea is to explore “more” in the earlier phases 

of the optimization process and exploit “more” later as 

we collect more information

Owoyele & Pal, Applied Energy, 2021
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CANONICAL 2D OPTIMIZATION TEST CASE

𝑓𝑥 = 𝑒𝑥𝑝
−4 𝑙𝑜𝑔 2 𝑥 − 0.0667 2

0.64
𝑠𝑖𝑛 5.1𝜋𝑥 + 0.5 6

𝑓𝑦 = 𝑒𝑥𝑝
−4 log2 𝑦 − 0.0667 2

0.64
sin 5.1𝜋𝑦 + 0.5 6

𝑧 = 𝑓𝑥𝑓𝑦Merit function
Maximum z = 1.0 occurring 

at x = y ≈ 0.0668

5 function 

evaluations per 

iteration

Strong learner

(Committee machine)

Weak learner

(BFM)



• ActivO is ~6 times faster than µGA and ~3 

times faster than PSO

• ActivO is more robust than µGA and PSO

Owoyele & Pal, ASME J. Energy Resour. Technol., 2020

Merit values based on average across 25 trials

OPTIMIZATION RESULTS
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COSINE MIXTURE FUNCTION TEST CASE

Maximum z (= 0.2) occurs at x = y = 0

𝑧 = 0.1 (cos 5𝜋𝑥 + cos )5𝜋𝑦) − (𝑥2 + 𝑦2

𝑥 ∈ −1, 1 , 𝑦 ∈ −1, 1

Objective is to maximize z

Owoyele & Pal, Applied Energy, 2021
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ActivO is compared against 5 state-of-the-art optimizers:

1. Micro-genetic Algorithm (µGA)

2. Particle Swarm Optimizer (PSO)

3. Differential Evolution (DE)

4. Genetic Optimization using Derivatives (GENOUD)

5. Basin Hopping (BH)

Owoyele & Pal, Applied Energy, 2021

COSINE MIXTURE FUNCTION TEST CASE

Weak learner

(SVR)

Strong learner

(Committee machine)

After convergence of ActivO
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OPTIMIZATION RESULTS

Merit values based on average across 25 trials

• ActivO converges to the global optimum much faster than all the other optimizers

• PSO, DE, and GENOUD converge prematurely and fail to reach the global optimum
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CFD-DRIVEN IC ENGINE OPTIMIZATION TEST CASE

Notation Input Parameter min max units

nNoz Number of Nozzle holes 8 10 -

TNA Total Nozzle Area 1 1.3 -

Pinj Injection Pressure 1400 1800 bar

SOI Start of injection timing -11 -7 dATDC

Nang Nozzle Inclusion Angle 73 83 deg

EGR EGR fraction 0.35 0.5 -

Tivc IVC temperature 323 373 K

Pivc IVC pressure 2.0 2.3 bar

SR Swirl Ratio -2.4 -1 -

• Optimization of a heavy-duty engine operating on a

gasoline-like fuel at a medium load condition

• Nine-dimensional design space

𝑴𝒆𝒓𝒊𝒕 = 𝟏𝟎𝟎 ∗

𝟏𝟔𝟎

𝑰𝑺𝑭𝑪
− 𝒇 𝑷𝑴𝑨𝑿 − 𝒇 𝑴𝑷𝑹𝑹 −

𝒇 𝑺𝑶𝑶𝑻 − 𝒇 𝑵𝑶𝒙

𝐟 𝑷𝑴𝑨𝑿 = 𝟏𝟎𝟎

𝑷𝑴𝑨𝑿

𝟐𝟐𝟎
− 𝟏, 𝐢𝐟 𝐏𝐌𝐀𝐗 > 𝟐𝟐𝟎

𝟎, 𝐢𝐟 𝐏𝐌𝐀𝐗 ≤ 𝟐𝟐𝟎

𝐟 𝑴𝑷𝑹𝑹 = 𝟏𝟎

𝑴𝑷𝑹𝑹

𝟏𝟓
− 𝟏, 𝐢𝐟 𝐌𝐏𝐑𝐑 > 𝟏𝟓

𝟎, 𝐢𝐟 𝐌𝐏𝐑𝐑 ≤ 𝟏𝟓

𝐟 𝑺𝑶𝑶𝑻 =
𝑺𝑶𝑶𝑻

𝟎. 𝟎𝟐𝟔𝟖
− 𝟏, 𝐢𝐟 𝐒𝐎𝐎𝐓 > 𝟎.𝟎𝟐𝟔𝟖

𝟎, 𝐢𝐟 𝐒𝐎𝐎𝐓 ≤ 𝟎.𝟎𝟐𝟔𝟖

𝐟 𝑵𝑶𝒙 =

𝑵𝑶𝒙

𝟏. 𝟑𝟒
− 𝟏, 𝐢𝐟 𝑵𝑶𝒙 > 𝟏.𝟑𝟒

𝟎, 𝐢𝐟 𝑵𝑶𝒙 ≤ 𝟏.𝟑𝟒

Shape optimization 

and multiple loads can 

also be incorporated

(ASME JERT-20-1594, 

SAE 2020-01-1313)

Owoyele & Pal, Applied Energy, 2021
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Baseline case Optimized case

• ActivO lowers computational expense from 117,000 core hours to 20,000 core hours (over 80% decrease)

• ActivO shows 5-7X speedup (from 2 months to less than 2 weeks) over CONVERGE’s µGA algorithm

Strong and weak 

ML surrogates

Update ML 

models

Next design 

points to 

test

*ActivO was coupled with 

CONVERGE CFD solver

OPTIMIZATION RESULTS 

Engine CFD Number of simulations to 

achieve convergence
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Owoyele & Pal, Applied Energy, 2021



OPTIMIZATION RESULTS

 Number of CFD simulations it takes to reach a merit value of 104.0:

o 88 for ActivO vs 464 for µGA

 Maximum merit value reached:

o 104.14 for ActivO vs 104.0 for µGA

• 8 CFD simulations/design iteration

18
Owoyele & Pal, Applied Energy, 2021



CFD-ActivO DESIGN OPTIMIZATION

Turbulent jet mixer geometry

 Evaluate the performance of mixer 

designs (multi-parameter)

 Generate new promising sets of 

design parameters

ActivO
Active ML optimization tool

 Automatic mesh generation 

and CFD case setup

 Multiphase L-E CFD simulations

10-parameter design space

Automatic geometry morphing 

for the new design parameter 

sets obtained from ActivO

1

2

3

Multi-parameter optimization of turbulent mixer geometry

Asztalos et al., APS-DFD, 2023

Asztalos et al., APS-DFD, 2024
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M𝐹 =
𝑒𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑 %𝑟𝑒𝑓

𝑒𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑 %
+

𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑟𝑒𝑓
+ 𝑓 𝜏𝑏𝑢𝑏



SUMMARY

• An adaptive surrogate-based active ML optimization algorithm (ActivO) was developed that uses a weak

learner for exploration and a strong learner for exploitation of the design space

• A mechanism for dynamically adjusting the balance between exploration and exploitation, as well as a method

for assessing convergence was incorporated

• ActivO was also shown to converge significantly faster to the design optimum compared to state-of-the-art

optimization algorithms; this leads to significant savings in the design time and associated computational cost

• Demonstration studies have been performed for optimization of IC engines and turbulent jet mixers wherein

ActivO was coupled with CONVERGE and OpenFOAM CFD solvers, respectively

• The self-contained and automated ActivO software can be readily interfaced with any CFD code of interest for

performing a wide range of design optimization campaigns

• Incorporation of uncertainty-based robust optimization strategies to account for perturbations and/or

manufacturing tolerances in the design parameters

• Parallelized workflows for large-scale optimization campaigns via coupling with SmartSim

Future work
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