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Introduction

• Develop Deep Learning (DL) based models for accurate drag predictions, to deploy in less 
computationally expensive methods (such as CFD-DEM) for PRS/DNS level accuracy.

• First attempt with DL for developing dynamic drag models.
• Investigate the generalizability of said models across different parameters of the dataset.

Flow through porous fibers[1]

Aim

Snapshots of rod like particles in a 
fluidized bed, adapted from CFD-DEM 

simulation of fluidization of rod-like 
particles in a fluidized bed [2]

Flow through porous 
solid[3]

• Flow across random 
arrangement of solid particles 
can be found in various 
applications.

• Studying them experimentally 
is challenging due to 
requirements of expensive 
experimental setups.

• Studying them numerically 
runs into the dilemma of 
accuracy vs computation 
expense. Flow through a random array of 

ellipsoidal particle[4]
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Drag forces in stationary vs dynamics particle simulations

• State-of-the-art correlations/DL models are 
developed based on only fixed particle 
simulations.

• However, drag forces obtained from correlations 
developed from simulations of fixed particles 
show different statistics compared to drag 
forces obtained from dynamic particle 
simulations, as seen in the plots.

• The discrepancy between dynamic and 
stationary drag increases linearly with Reynolds 
number based on granular temperature.

• Particle mobility effects are crucial for 
dynamic drag force predictions.

Y. Tang, E.A.J.F. Peters, J.A.M. Kuipers, Direct numerical simulations of 
dynamic gas-solid suspensions, AIChE J. 62 (2016) 1958–1969. 
https://doi.org/10.1002/AIC.15197.

TD0
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TD0 at what density ratio is this study done? BTW FYI these predictions of unsteady drag forces are high but for here
it is OK to show.
Tafti, Danesh, 2024-08-12T12:47:18.553

RA0 0 the density ratio is 500
Raj, Neil Ashwin, 2024-08-12T13:03:25.860
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Simulation setup and collision models

• The computational domain is cubic with each 
side being 5𝑑 , where 𝑑 is the particle 
diameter. The flow is driven by a pressure 
gradient in the positive x-direction, and 
additionally, there is a gravitational force in the 
negative x-direction.

• The Immersed Boundary Method (IBM) is used 
to model the solid spheres, and all the 
simulations have been performed in the inhouse 
code GenIDLEST.

• The particle collisional forces are modeled using 
the soft sphere model, if two particles come 
closer than a critical distance of separation the 
particle forces are calculated and applied in the 
opposite directions for each of them.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑

Before collision After collision

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑

Computational domain along with particles for 𝜑 0.1 and 𝜑 0.4

Z. Cao, D.K. Tafti, Alternate method for resolving particle collisions in PRS of 
freely evolving particle suspensions using IBM, Int. J. Multiph. Flow 177 (2024) 
104862. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104862.

TD0
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TD0 insert reference:
Cao Z, Tafti DK. “Alternate method for resolving particle collisions in PRS of freely evolving particle suspensions 
using IBM”. International Journal of Multiphase Flow. 2024 May 10:104862.
https://doi.org/10.1016/j.ijmultiphaseflow.2024.104862
Tafti, Danesh, 2024-08-12T12:58:46.906

n0 0 added
neilashwinraj, 2024-08-12T14:51:14.244
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Dataset Description

Solid Fraction Number of 
particles

Reynolds 
Numbers

Number of 
timeframes

0.1 24 {10,50,100,200,
300}

2860

0.2 48 {10,50,100,200,
300}

3016

0.3 72 {10,50,100,200,
300}

3016

0.4 95 {10,50,100,200,
300}

1839

• The simulations used in this study consider particles of density ratio=2, and there are a total of 20 different experiments 
that form the dataset.

• An experiment is characterized by its solid fraction and Reynolds number, there 4 different solid fractions in this study, 
and for each of the 4 solid fractions there are 5 different mean Reynolds numbers.

• Drag force statistics show that along with an increase in the drag force with an increase in Reynolds number, there is 
also an increase in standard deviation. The same can be said about solid fractions.

Ker𝑛𝑒𝑙 density estimates of the PRS drag forces for different Reynolds number for 
the different solid fractions (a)𝜑=0.1(b) 𝜑=0.2 (c) 𝜑=0.3 (d) 𝜑=0.4

Summary of different experiments

TD0
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TD0 Frequency ? 
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Stationary model : Graph convolution

Input Graph Hidden State after 𝑙
GCN layers
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𝑙  Graph
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Operation (GCN) 
Layer

GCN Layer: 𝑿 𝝈 𝑫𝑨𝑫 𝑿𝑾
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BackProp 𝑳𝒐𝒔𝒔

Degree Matrix 
(6 6)

Degree Matrix 
(6 6)

𝑾𝟒 𝒉𝒊𝒅𝒅𝒆𝒏

^(-1/2) ^(-1/2)

POI : 
particle of 
interest

Neighboring 
node/particle

TD0
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TD0 will have to explain to me - does not mean anything to me.
Tafti, Danesh, 2024-08-12T13:05:58.796



High Performance Computational Fluid-Thermal Sciences & Engineering Lab 8

Stationary model : Data splitting and Training 

Particle Trajectories

𝐹 ,  𝑓 𝑅𝑒 , 𝑟 ,

• Here 𝑓 is the trainable GCN model, Re and φ are the 
global parameters 𝑟 , and 𝑟 , are the position 
vectors of the 𝑛(here 𝑛=15 ) nearest neighbors at 𝑡
1 and 𝑡 2 respectively.

𝐹 ,  𝑓 𝑅𝑒 , 𝑟 ,

Mean Flow

Datapoint 1;𝒕 𝟏 Datapoint 2;𝒕 𝟐

Gravity

Time

POI

POI

𝑡 0

𝑡 𝑇

• A single particle and its 15 nearest 
neighbors at a given time frame forms a 
single datapoint.

• For a particular experiment 80% of the 
time frames form the training dataset and 
remaining 20% form the testing dataset. 

Train Timeframes
Test Timeframes

TD0
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TD0 i though RE was local
Tafti, Danesh, 2024-08-12T13:09:03.256

n0 0 corrected
neilashwinraj, 2024-08-12T14:30:37.782
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Stationary model : Predictions

𝝋/Reynolds number 10 50 100 200 300

𝝋=0.10 0.965 0.816 0.684 0.614 0.514

𝝋=0.20 0.810 0.571 0.532 0.417 0.484

𝝋=0.30 0.645 0.398 0.384 0.391 0.433

𝝋=0.40 0.632 0.274 0.249 0.203 0.245

• The performance deteriorates with an increase in Reynolds 
number and solid fraction.

• For all the experiments the GCN model performs better than 
the mean PRS drag force, and accuracy difference between 
the GCN and the mean drag reduces with an increase in
Reynolds number and solid fraction.

φ=0.10 Re=10

φ=0.20 Re=50

φ=0.30 Re=100

φ=0.40 Re=200
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Dynamic model: Graph Attention

• The concept of the “attention mechanism” in deep learning refers to weighing the different embeddings or latent space 
representations within a deep learning architecture.

• For the problem of drag predictions using the nearest neighbors, this would mean that the GNN can now in the course of 
training can assign higher importance to the nearby nodes as they will influence the drag forces more than the far away 
nodes, something which is not explicitly performed by a conventional GCN layer.

𝒙  
1

deg 𝑖 · deg 𝑗∈ ∪

· 𝑾 · 𝒙 𝒃

Graph convolution layer

𝒙  𝛼 ,
∈ ∪

𝑾 · 𝒙 𝒃

𝛼 ,
𝑒𝑥𝑝 LeakyReLU 𝒂 𝑾𝑥 ||𝑾𝑥

∑ 𝑒𝑥𝑝 LeakyReLU 𝒂 𝑾𝑥 ||𝑾𝑥∈

Graph attention layer

P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, Y. Bengio, Graph attention networks, in: 
6th Int. Conf. Learn. Represent. ICLR 2018 - Conf. Track Proc., International Conference on 
Learning Representations, ICLR, 2018. https://doi.org/10.1007/978-3-031-01587-8_7.

Graph attention layer
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Dynamic model: Combining Graph Attention with Transformers 

G
AT

G
AT G
AT

t=1
t=2

Transformer

Particle Trajectories
Time

𝑡 0

𝑡 𝑇

Train Timeframes
Test Timeframes

t=3

𝑭𝒅,𝒑𝒐𝒊 𝒂𝒕 𝒕 𝟑 
Many to one mapping

𝑭𝒅,𝒑𝒐𝒊 𝒂𝒕 𝒕 𝟏,𝟐,𝟑 
Seq to Seq mapping

Temporal graph structure 
sequence of a given 
particle of interest, the 
edge connections remain 
the same, but the nodes 
will vary

• A temporal sequence of a particle and 
the location of its 15 nearest neighbors 
constitutes a single data point.

• Two different training regimes are 
explored one, where the trajectory 
sequence is mapped to the drag at the 
final time step and another where it's 
mapped to a sequence of drag forces  

TD0
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TD0 explain what transformer is in simple language when presenting
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Dynamic model: Predictions
φ=0.10 Re=200

φ=0.10 Re=300

φ=0.20 Re=300

φ=0.40 Re=200

Stationary Dynamic

𝝋/Reynolds 
number 10 50 100 200 300 10 50 100 200 300

𝝋=0.10 0.965 0.816 0.684 0.614 0.514 0.931 0.82 0.705 0.680 0.675

𝝋=0.20 0.810 0.5706 0.532 0.417 0.484 0.857 0.579 0.659 0.561 0.604

𝝋=0.30 0.645 0.398 0.384 0.391 0.433 0.764 0.573 0.553 0.514 0.493

𝝋=0.40 0.632 0.274 0.249 0.203 0.245 0.697 0.475 0.477 0.486 0.415

• The dynamic model outperforms the stationary model across all the experiments.

• The model sees the same trend pf performance deterioration with increasing 
Reynolds numbers and solid fraction.

• The improvement in performance is more prominent at higher Reynolds numbers 
and solid fractions, essentially meaning that a lower Reynolds and solid fraction 
the flow field the difference between the dynamic and static flow fields is not 
significantly different.
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Dynamic model: Predictions on Single Particles

Particle from 
φ=0.20 Re=100

Particle from 
φ=0.20 Re=200

Particle from φ=0.20 
Re=200

Dynamic model 
captures 
collisions 

On average  force 
predictions of dynamic 
model are greater than the 
stationary model

Particle from φ=0.20 
Re=200

Dynamic model 
occasionally reverses 
the collision
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Conclusions and Further Work

• Graph neural networks-based models were assessed in their ability to model drag forces in dense suspensions 
of spherical particles across different solid fractions and Reynolds numbers.

• The dynamic model outperformed the stationary model across all dataset, thus including trajectory history is 
crucial in developing accurate drag models.

• The sequence-to-sequence based training outperforms the many to one mapping model.

Future Work:
• Introducing hierarchical learning framework by using hypergraph convolutions
• Incorporating physical constraints on the training datasets, such as rotational equivariance and invariance.  

1. Shirzadi, M., Fukasawa, T., Fukui, K. and Ishigami, T., 2023. Application of deep learning neural networks for the analysis of fluid-particle dynamics in fibrous filters. Chemical 
Engineering Journal, 455, p.140775.

2. Ma, H., Xu, L. and Zhao, Y., 2017. CFD-DEM simulation of fluidization of rod-like particles in a fluidized bed. Powder technology, 314, pp.355-366.
3. Santos, J.E., Xu, D., Jo, H., Landry, C.J., Prodanović, M. and Pyrcz, M.J., 2020. PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media. Advances in 

Water Resources, 138, p.103539.
4. He, L. and Tafti, D., 2018. Variation of drag, lift and torque in a suspension of ellipsoidal particles. Powder Technology, 335, pp.409-426.
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