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Turbulent particle-laden flow
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Turbulent particle-laden flow

 Useful physical information

 Data can be used to validate the
numerical solver

« Sometimes hard to perform

4 A « Expensive and time consuming Y,

Study of turbulent g
Kpartic:le-laden flows

{Experimental

/ Robust numerical algorithms are

J : :
| | needed (ongoing topics of research)
EiuebtoI In?;rent COfT}plt?XItytof « Effect of different parameters can be
urbulent flow, analyzing its [ . studied
Interaction with dispersed — Numerical }_' :
X  Future behaviors of the flow can be

phase, particle deposition and

heat transfer is challenging. predicted

* The design optimization can be

performed
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Solver and computational domain
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method
With point-particle
assumption

~  Eulerian-Lagrangian

)

* High accuracy

To resolve the dispersed phase at lower mass fractions.

« Simplicity of modeling

Qhe interaction between the phases.




Carrier phase, Eulerian

Resolving all of the turbulence
scales
No modeling

Computationally expensive

)

Resolving large scales
Sub-grid Scale stresses are
model

Trade-off between accuracy
and computational cost

)

Mean quantities of fluid flows
Reynolds stress terms are
model

Lowest computational cost

)

Maries, Adrian, et al. "Interactive exploration of stress tensors used in computational turbulent combustion.” New Developments in the

N

TL

NATIONAL

TECHNOLOGY
LABORATORY

Visualization and Processing of Tensor Fields. Springer, Berlin, Heidelberg, 2012. 137-156.



Motivation and Objective

Motivation

* Enhancing LES accuracy in particle-laden wall-bounded
flows through subgrid-scale fluctuations modeling for
particles.

Objective

* Develop an appropriate Langevin equation for simulating
sub-grid scale velocity fluctuations seen by particles so that
particle fluctuation and concentration are correctly predicted.
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Solver and Computational domain

TL

Eulerian-Lagrangian approach

Point-particle assumption, one-way coupling

Channel flow with periodic boundary conditions in the streamwise and spanwise directions.
Re.= 180 - tracking 200,000 particles

Particle-wall collisions: Fully absorbing (trap-wall)

For DNS 1283 grid points

The parallel solver runs in a distributed memory environment (MPI)

Time integration with second-order Adams—Bashforth method.

Fourth-order central scheme in the periodic streamwise and spanwise directions.
Second-order central scheme in the wall-normal direction, and viscous terms.
Second-order Lagrange interpolation for the fluid velocity at the particle location.

Spectral method with a modified wave number is used for the pressure Poisson equation in the
homogeneous direction and a tridiagonal solver for the normal direction.

g_araltl_el mode available by dividing the computational domain into rectangular blocks in the normal
irection.

NATIONAL

TECHNOLOGY
LABORATORY



Filtered DNS (FDNS)
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- Sharp-cut off filter in Fourier space: G(k;) = 1
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Missed fluctuations in FDNS

‘ SGS velocity fluctuations I

‘ DNS Grid- 128x128x128 I
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SGS velocity fluctuations are non-homogeneous and anisotropic.
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Near wall flow structures

DNS

FDNS-16

Normal velocity
0

-2 -1 ‘ 1 2

Streamwise velocity
0 0.5 1

X

SR 4t G
PRI VB

Normal velocity

NATIONAL

T L TECHNOLOGY
LABORATORY

Snapshot of particle dispersion at tu, /h =100
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Effect of filtering on particles

‘ Particle concentration I ( Particle velocity fluctuations ]
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Effect of filtering on particles

N
TL

NATIONAL

TECHNOLOGY
LABORATORY

Particle deposition velocity
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Stochastic modeling

SGS velocity fluctuation see by particles

— — => Drift term

/
(e S .
» 7 is Lagrangian time scale Isotropic Model
* ¢ is RMS of SGS velocity T AZ/ ——
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No Drift term

‘ Concentration I :
‘ Time scale I
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Excluding the drift term in the stochastic equation results in high concentration near the

N=|anona wall region, irrespective of the time scale employed in the equation (7, or ).
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Model with drift term and modified time scale
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Near wall flow structures with model

With model No model

Normal velocity Normal velocity
0

-2 -1 : 1 2

_”Cgt_lter of channel

FDNS — With model

FDNS- No model

Streamwise velocity Streamwise velocity
0 05 1 1.5 2 0 05 1 1.5 2
X-Z plane
G2 K ST o ]
By 5

NATIONAL Snapshot of particle dispersion tu, /h = 100

T L TECHNOLOGY
LABORATORY




Conclusions and future study

* Filtering significantly decreases the particle deposition
velocities at lower Stokes numbers (St =1, 2, 5) and affects
the particle dispersion in channel.

* The developed stochastic model is capable of predicting the
correct deposition velocities and concentration profiles of
lower inertia particles when the proper time-scale was used.

* Future Work: Evaluating the model performance for real
LES scenarios.
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Conclusions and future study

Thank you for your attentions!

Questions?
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