

Enhancing Accuracy of Large Eddy Simulation for Particle-Laden Wall-Bounded Flows Through Stochastic Subgrid Scale Fluctuations Modeling

Farid Rousta¹, Goodarz Ahmadi¹, Bamdad Lessani²

¹ Department of Mechanical and Aerospace Engineering Clarkson University, Potsdam, NY

²Department of Mechanical Engineering and Engineering Science The University of North Carolina at Charlotte, NC

• **Introduction**

- ❑ Motivation and objective
- ❑ Solver and computational domain
- **Results**
	- ❑ FDNS results
	- ❑ Particles dispersion and deposition: FDNS vs DNS
	- ❑ Stochastic SGS fluctuations modeling
- **Conclusions and future study**

Turbulent particle-laden flow

Turbulent particle-laden flow

4

Study of turbulent particle-laden flows

Due to inherent complexity of turbulent flow, analyzing its interaction with dispersed phase, particle deposition and heat transfer is challenging.

Experimental

Numerical

- Useful physical information
- Data can be used to validate the numerical solver
- Sometimes hard to perform
- Expensive and time consuming
- Robust numerical algorithms are needed (ongoing topics of research)
- Effect of different parameters can be studied
- Future behaviors of the flow can be predicted
- The design optimization can be performed

Solver and computational domain

:HNOLOGY

Carrier phase, Eulerian

- Resolving all of the turbulence scales
- No modeling
- Computationally expensive
- Resolving large scales
- Sub-grid Scale stresses are model
- Trade-off between accuracy and computational cost
- Mean quantities of fluid flows
- Reynolds stress terms are model
- Lowest computational cost

Maries, Adrian, et al. "Interactive exploration of stress tensors used in computational turbulent combustion." New Developments in the Visualization and Processing of Tensor Fields. Springer, Berlin, Heidelberg, 2012. 137-156.

Motivation

• Enhancing LES accuracy in particle-laden wall-bounded flows through subgrid-scale fluctuations modeling for particles.

Objective

• Develop an appropriate Langevin equation for simulating sub-grid scale velocity fluctuations seen by particles so that particle fluctuation and concentration are correctly predicted.

Solver and Computational domain

- Eulerian-Lagrangian approach
- Point-particle assumption, one-way coupling
- Channel flow with periodic boundary conditions in the streamwise and spanwise directions.
- $Re_{\tau} = 180$ tracking 200,000 particles
- Particle-wall collisions: Fully absorbing (trap-wall)
- For DNS 128^3 grid points
- The parallel solver runs in a distributed memory environment (MPI)
- Time integration with second-order Adams–Bashforth method.
- Fourth-order central scheme in the periodic streamwise and spanwise directions.
- Second-order central scheme in the wall-normal direction, and viscous terms.
- Second-order Lagrange interpolation for the fluid velocity at the particle location.
- Spectral method with a modified wave number is used for the pressure Poisson equation in the homogeneous direction and a tridiagonal solver for the normal direction.
- Parallel mode available by dividing the computational domain into rectangular blocks in the normal direction.

Filtered DNS (FDNS)

• Sharp-cut off filter in Fourier space: $\hat{G}(\kappa_i) = 1$

SGS velocity fluctuations are non-homogeneous and anisotropic.

Near wall flow structures

Snapshot of particle dispersion at t u_{τ} /h = 100

Effect of filtering on particles

 10^2

Effect of filtering on particles

Particle deposition velocity

Stochastic modeling

No Drift term

ATIONAL TECHNOLOGY
LABORATORY Excluding the drift term in the stochastic equation results in high concentration near the wall region, irrespective of the time scale employed in the equation (τ_1 or τ_2).

15

Model with drift term and modified time scale

Near wall flow structures with model

Snapshot of particle dispersion t u_{τ} /h = 100

• Filtering significantly decreases the particle deposition velocities at lower Stokes numbers $(St = 1, 2, 5)$ and affects the particle dispersion in channel.

•The developed stochastic model is capable of predicting the correct deposition velocities and concentration profiles of lower inertia particles when the proper time-scale was used.

• Future Work: Evaluating the model performance for real LES scenarios.

Thank you for your attentions!

Questions?

