[Background](#page-2-0) [Model Specification](#page-8-0) [Perspective: granular flows](#page-14-0) [Summary](#page-17-0)
0000 0000 0000 0000 000

A kinetic-based model for incompressible, polydisperse, fluid-particle flows

Chris Stafford^[1], Rodney O. Fox^[1], Alberto Passalacqua^[2]

[1] Department of Chemical and Biological Engineering [2] Department of Mechanical Engineering Iowa State University

NETL Multiphase Flow Workshop 2024 August 13, 2024

- 2 [Model Specification](#page-8-0)
- 3 [Perspective: granular flows](#page-14-0)

- 2 [Model Specification](#page-8-0)
- 3 [Perspective: granular flows](#page-14-0)
- **[Summary](#page-17-0)**

IOWA STATE UNIVERSITY Center for Multiphase Flow Research and Education

[Background](#page-2-0) [Model Specification](#page-8-0) [Perspective: granular flows](#page-14-0) [Summary](#page-17-0)

Background

- Modelling of particle-laden flows in industrial systems
- Computational expense of simulations is prohibitive due to number of droplets required
- **Euler-Euler models** provide a continuum description for a suspension of droplets
- ▶ **Quadrature method of moments** (QMOM) models the particle phase at a **mesoscopic level** by using a kinetic-based approach for closure of the flux and source terms
- \blacktriangleright Able to include a variety of important physical effects in dense suspensions such as **collisions**, **heat transfer**, and **added mass**
- ▶ Offers a **detailed and accurate** means of modelling industrial particle-laden flow systems

¹Marchisio D. *et al.*; AICHE J. (2003)

Overview of QMOM development

Fox *et al.* **2024** Extension to polydisperse high-speed fluid-particle flows **Eulerian description of the**

particle phase

Overview of QMOM development

Fox *et al.* **2024** Extension to polydisperse high-speed fluid-particle flows **Eulerian description of the**

particle phase

... application to polydisperse incompressible fluid-particle flows

Kinetic model for polydisperse particles

Generalised population balance equation for mass-velocity-internal-energy NDF²

$$
\partial_t f + \partial_x \cdot \left(\mathbf{u}f - P_p \frac{\partial f}{\partial \mathbf{u}} \right)
$$

+
$$
\frac{\partial}{\partial \mathbf{u}} \cdot \left[\frac{1}{\tau_p(\xi)} (\mathbf{u}_f - \mathbf{u}) f - \frac{1}{\rho_e} (\partial_x \hat{p}_f + \mathbf{F}_{pf}) f - \frac{1}{\rho_e \alpha_p^*} (\partial_x \cdot \mathbf{P}_{pfp}) f \right]
$$

+
$$
\frac{\partial}{\partial e} [A_e(\xi)f] = \frac{\partial^2}{\partial \mathbf{u} \partial \mathbf{u}} : [\mathbf{B}_u(\xi)f] + C + F + S
$$

²Marchisio D.L. & Fox R.O.; CUP (2013)

Kinetic model for polydisperse particles

Generalised population balance equation for mass-velocity-internal-energy NDF²

$$
\partial_t f + \partial_x \cdot \left(\mathbf{u}f - P_p \frac{\partial f}{\partial \mathbf{u}} \right)
$$

+
$$
\frac{\partial}{\partial \mathbf{u}} \cdot \left[\frac{1}{\tau_p(\xi)} (\mathbf{u}_f - \mathbf{u}) f - \frac{1}{\rho_e} (\partial_x \hat{p}_f + \mathbf{F}_{pf}) f - \frac{1}{\rho_e \alpha_p^*} (\partial_x \cdot \mathbf{P}_{pfp}) f \right]
$$

+
$$
\frac{\partial}{\partial e} [A_e(\xi)f] = \frac{\partial^2}{\partial \mathbf{u} \partial \mathbf{u}} : [\mathbf{B}_u(\xi)f] + C + F + S
$$

- ▶ Spatial free transport and particle pressure
- ▶ Surface forces: fluid drag, buoyancy, pfp-pressure
- ▶ Source terms correspond to collisions, friction, and added mass

²Marchisio D.L. & Fox R.O.; CUP (2013)

2 [Model Specification](#page-8-0)

3 [Perspective: granular flows](#page-14-0)

[Summary](#page-17-0)

1D model equations

Derived for 4 mass-conditioned velocities and 6 half-order mass moments³

24 conserved variables

- \blacktriangleright Fluid: $\rho_f \alpha_f^* \rho_f \alpha_f^* u_f$, $\rho_f \alpha_f^* k_f$, $\rho_f \alpha_f^* E_f$
- **Particle volume fraction:** α_p
- \blacktriangleright Half-order mass moments: \mathcal{M}_0 , $\mathcal{M}_{1/2}$, \mathcal{M}_1 , $\mathcal{M}_{3/2}$, \mathcal{M}_2 , $\mathcal{M}_{5/2}$, \mathcal{M}_3
- \blacktriangleright Mass-weighted velocities: \mathcal{U}_0^1 , \mathcal{U}_1^1 , \mathcal{U}_2^1 , \mathcal{U}_3^1
- \blacktriangleright Kinetic energies: \mathcal{K}_0 , \mathcal{K}_1 , \mathcal{K}_2 , \mathcal{K}_3
- \blacktriangleright Mass-internal-energy moments: $\mathcal{E}_0^e, \mathcal{E}_1^e, \mathcal{E}_2^e, \mathcal{E}_3^e$

³Fox R.O. *et al.*; IJMF (2024)

Incompressible fluid phase

Barotropic assumption

- ▶ Treat fluid as **weakly compressible** to retain density-based solver formulation
- \blacktriangleright Fluid pressure defined by barotropic equation of state:

$$
p_f = \rho_f \Theta_f
$$

- $\blacktriangleright \Theta_f \gg u_f^2$ is constant
- ▶ Density nearly constant when Mach number $Ma = u_f / \sqrt{\Theta_f} \approx 0.01$
- \blacktriangleright Estimate u_f using slip velocity due to gravity
- Fluid phase eigenvalues $u_f \pm \sqrt{\Theta_f}$ control the time step through CFL condition

Particle pressure terms

Frictional pressure

 \blacktriangleright Assumed the same as in the monodisperse case⁴

 $P_{fr} = C_{fr} \alpha_p^n (1 + n \alpha_f) h_{fr}(\alpha_p)$

⁴Boniou V. *et al.* (2023) ⁵Fox R.O. *et al.*; IJMF (2024) ⁶Santos A. *et al. et al.*; Mol. Phys. (1999)

Particle pressure terms

Frictional pressure

 \blacktriangleright Assumed the same as in the monodisperse case⁴

$$
P_{fr} = C_{fr} \alpha_p^n (1 + n \alpha_f) h_{fr}(\alpha_p)
$$

Collisional pressure

 \blacktriangleright Employed as polydisperse model⁵

$$
P_c = \frac{\beta}{\rho_p} \int \xi p_c(\xi) n(\xi) d\xi
$$

⁴Boniou V. *et al.* (2023) ⁵Fox R.O. *et al.*; IJMF (2024)

⁶Santos A. *et al. et al.*; Mol. Phys. (1999)

Particle pressure terms

Frictional pressure

 \blacktriangleright Assumed the same as in the monodisperse case⁴

$$
P_{fr} = C_{fr} \alpha_p^n (1 + n \alpha_f) h_{fr}(\alpha_p)
$$

Collisional pressure

 \blacktriangleright Employed as polydisperse model⁵

$$
P_c = \frac{\beta}{\rho_p} \int \xi p_c(\xi) n(\xi) d\xi
$$

Radial distribution function

 \blacktriangleright Polydisperse expression used⁶

$$
g(\xi,\zeta) = \frac{1}{\alpha_f} + \left(g_0(\alpha_f) - \frac{1}{\alpha_f}\right) \frac{\langle d_p^2 \rangle}{\langle d_p^3 \rangle} \frac{2d_p(\xi)d_p(\zeta)}{d_p(\xi) + d_p(\zeta)}
$$

⁴Boniou V. *et al.* (2023)

⁵Fox R.O. *et al.*; IJMF (2024)

⁶Santos A. *et al. et al.*; Mol. Phys. (1999)

[Background](#page-2-0)

- 2 [Model Specification](#page-8-0)
- 3 [Perspective: granular flows](#page-14-0)

[Summary](#page-17-0)

Dune contours

- ▶ Behaviour of different particle sizes within sedimentary flow of sand immersed in water
- \triangleright Contours of the critical particle volume fraction for $\underline{\hspace{1cm}}$ $d_p = 297$ micron, $\cdot \cdot \cdot \cdot d_p = 250$ micron, \cdots $d_n = 210$ micron.

Dune velocity profiles

▶ Behaviour of different particle sizes within sedimentary flow of sand immersed in water

 \triangleright Cross-sectional profiles of particle velocity magnitude at locations: $x = 0.2286$ m; $x = 0.4572$ m; $x = 0.6858$ m; for $\underline{\hspace{1cm}}$ = 297 micron, $\cdot \cdot \cdot \cdot$ $d_n = 250$ micron, $\cdot \cdot \cdot \cdot \cdot \cdot$ $d_n = 210$ micron.

[Background](#page-2-0)

- 2 [Model Specification](#page-8-0)
- 3 [Perspective: granular flows](#page-14-0)

Summary

Conclusions

- ▶ **Density-based solver** for **polydisperse liquid-particle flows**
- ▶ **Barotropic equation of state** used to specify fluid pressure for a **weakly compressible flow**
- ▶ **Frictional and collisional pressures** are important in capturing the transition from a dense particle suspension to granular flow

Summary

Conclusions

- ▶ **Density-based solver** for **polydisperse liquid-particle flows**
- ▶ **Barotropic equation of state** used to specify fluid pressure for a **weakly compressible flow**
- ▶ **Frictional and collisional pressures** are important in capturing the transition from a dense particle suspension to granular flow

Outlook

- \blacktriangleright Improve numerical flux splitting schemes to limit diffusion
- ▶ Replace correlations for frictional and collisional pressures with models from granular rheology

IOWA STATE UNIVERSITY Center for Multiphase Flow Research and Education

[Background](#page-2-0) [Model Specification](#page-8-0) [Perspective: granular flows](#page-14-0) [Summary](#page-17-0)
 $\begin{array}{cc}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{array}$

Questions

Thank you for your attention

<cs9@iastate.edu>

