IOWA STATE UNIVERSITY Center for Multiphase Flow Research and Education

Background

Model Specification

Perspective: granular flows

Summary 00

A kinetic-based model for incompressible, polydisperse, fluid-particle flows

Chris Stafford^[1], Rodney O. Fox^[1], Alberto Passalacqua^[2]

 [1] Department of Chemical and Biological Engineering
 [2] Department of Mechanical Engineering lowa State University

NETL Multiphase Flow Workshop 2024 August 13, 2024

Model Specification

Outline

- 2 Model Specification
- 3 Perspective: granular flows

Model Specificatior

Outline

- 2 Model Specification
- 3 Perspective: granular flows
- 4 Summary

IOWA STATE UNIVERSITY Center for Multiphase Flow Research and Education

Background ഫററ്

Background

- Modelling of particle-laden flows in industrial systems
- Computational expense of simulations is prohibitive due to number of droplets required
- **Euler-Euler models** provide a continuum description for a suspension of droplets
- Quadrature method of moments (QMOM) models the particle phase at a **mesoscopic level** by using a kinetic-based approach for closure of the flux and source terms
- Able to include a variety of important physical effects in dense suspensions such as collisions, heat transfer, and added mass
- Offers a detailed and accurate means of modelling industrial particle-laden flow systems

¹Marchisio D. et al.: AICHE J. (2003)

New Vista Research

Model Specification

Perspective: granular flow

Summary 00

Overview of QMOM development

Marchisio <i>et al.</i> 2003	Procedure first applied to population balance equations
Fox 2008	Direct QMOM applied to dilute gas-particle flows
Yuan & Fox 2011	Conditional QMOM (CQMOM) developed using 1-D adaptive quadrature of conditional velocity moments
Kong & Fox 2020	Application of QMOM to polydisperse gas-particle flows by reconstructing the particle size distribution
Fox & Laurent 2022	Hyperbolic QMOM (HyQMOM) developed to ensure globally hyperbolic moment closure
Boniou <i>et al.</i> 2023	Application to high-speed fluid particle flows
Fox <i>et al.</i> 2023	Generalised QMOM (GQMOM) developed allowing for an arbitrary number of quadrature nodes
Fox <i>et al.</i> 2024	Extension to polydisperse high-speed fluid-particle flows

Eulerian description of the particle phase

Model Specification

Perspective: granular flow

Summary 00

Overview of QMOM development

Marchisio et al. 2003	Procedure first applied to population balance equations
Fox 2008	Direct QMOM applied to dilute gas-particle flows
Yuan & Fox 2011	Conditional QMOM (CQMOM) developed using 1-D adaptive quadrature of conditional velocity moments
Kong & Fox 2020	Application of QMOM to polydisperse gas-particle flows by reconstructing the particle size distribution
Fox & Laurent 2022	Hyperbolic QMOM (HyQMOM) developed to ensure globally hyperbolic moment closure
Boniou <i>et al.</i> 2023	Application to high-speed fluid particle flows
Fox <i>et al.</i> 2023	Generalised QMOM (GQMOM) developed allowing for an arbitrary number of quadrature nodes
Fox <i>et al.</i> 2024	Extension to polydisperse high-speed fluid-particle flows

Eulerian description of the particle phase

... application to polydisperse incompressible fluid-particle flows

Model Specificat

Summary 00

Kinetic model for polydisperse particles

Generalised population balance equation for mass-velocity-internal-energy NDF²

Background

$$\begin{aligned} \partial_t f + \partial_x \cdot \left(\boldsymbol{u} f - P_p \frac{\partial f}{\partial \boldsymbol{u}} \right) \\ &+ \frac{\partial}{\partial \boldsymbol{u}} \cdot \left[\frac{1}{\tau_p(\xi)} \left(\boldsymbol{u}_f - \boldsymbol{u} \right) f - \frac{1}{\rho_e} \left(\partial_x \hat{p}_f + \boldsymbol{F}_{pf} \right) f - \frac{1}{\rho_e \alpha_p^*} \left(\partial_x \cdot \boldsymbol{P}_{pfp} \right) f \right] \\ &+ \frac{\partial}{\partial e} \left[A_e(\xi) f \right] = \frac{\partial^2}{\partial \boldsymbol{u} \partial \boldsymbol{u}} : \left[\boldsymbol{B}_u(\xi) f \right] + C + F + S \end{aligned}$$

²Marchisio D.L. & Fox R.O.; CUP (2013)

C. Stafford, R.O. Fox, A. Passalacqua

Model Specificat

Kinetic model for polydisperse particles

Generalised population balance equation for mass-velocity-internal-energy NDF²

Background

$$\begin{aligned} \partial_t f + \partial_x \cdot \left(\boldsymbol{u} f - P_p \frac{\partial f}{\partial \boldsymbol{u}} \right) \\ &+ \frac{\partial}{\partial \boldsymbol{u}} \cdot \left[\frac{1}{\tau_p(\xi)} \left(\boldsymbol{u}_f - \boldsymbol{u} \right) f - \frac{1}{\rho_e} \left(\partial_x \hat{p}_f + \boldsymbol{F}_{pf} \right) f - \frac{1}{\rho_e \alpha_p^*} \left(\partial_x \cdot \boldsymbol{P}_{pfp} \right) f \right] \\ &+ \frac{\partial}{\partial e} \left[A_e(\xi) f \right] = \frac{\partial^2}{\partial \boldsymbol{u} \partial \boldsymbol{u}} : \left[\boldsymbol{B}_u(\xi) f \right] + C + F + S \end{aligned}$$

- Spatial free transport and particle pressure
- Surface forces: fluid drag, buoyancy, pfp-pressure
- Source terms correspond to collisions, friction, and added mass

C. Stafford, R.O. Fox, A. Passalacqua

²Marchisio D.L. & Fox R.O.; CUP (2013)

Model Specification

Perspective: granular flows

Outline

- 2 Model Specification
- 3 Perspective: granular flows
- 4 Summary

1D model equations

Derived for 4 mass-conditioned velocities and 6 half-order mass moments³

24 conserved variables

- $\blacktriangleright \text{ Fluid: } \rho_f \alpha_f^{\star}, \rho_f \alpha_f^{\star} u_f, \rho_f \alpha_f^{\star} k_f, \rho_f \alpha_f^{\star} E_f$
- Particle volume fraction: α_p
- ► Half-order mass moments: \mathcal{M}_0 , $\mathcal{M}_{1/2}$, \mathcal{M}_1 , $\mathcal{M}_{3/2}$, \mathcal{M}_2 , $\mathcal{M}_{5/2}$, \mathcal{M}_3
- Mass-weighted velocities: \mathcal{U}_0^1 , \mathcal{U}_1^1 , \mathcal{U}_2^1 , \mathcal{U}_3^1
- Kinetic energies: $\mathcal{K}_0, \mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_3$
- Mass-internal-energy moments: \mathcal{E}_0^e , \mathcal{E}_1^e , \mathcal{E}_2^e , \mathcal{E}_3^e

³Fox R.O. *et al.*; IJMF (2024)

Incompressible fluid phase

Barotropic assumption

- ► Treat fluid as weakly compressible to retain density-based solver formulation
- Fluid pressure defined by barotropic equation of state:

$$p_f = \rho_f \Theta_f$$

- $\Theta_f \gg u_f^2$ is constant
- Density nearly constant when Mach number $Ma = u_f / \sqrt{\Theta_f} \approx 0.01$
- ► Estimate *u_f* using slip velocity due to gravity
- Fluid phase eigenvalues $u_f \pm \sqrt{\Theta_f}$ control the time step through CFL condition

Particle pressure terms

Frictional pressure

Assumed the same as in the monodisperse case⁴

 $P_{fr} = C_{fr} \alpha_p^n \left(1 + n\alpha_f \right) h_{fr}(\alpha_p)$

⁴Boniou V. *et al.* (2023)
 ⁵Fox R.O. *et al.*; IJMF (2024)
 ⁶Santos A. *et al. et al.*; Mol. Phys. (1999)
 C. Stafford, R.O. Fox, A. Passalacqua

Particle pressure terms

Frictional pressure

Assumed the same as in the monodisperse case⁴

$$P_{fr} = C_{fr} \alpha_p^n \left(1 + n\alpha_f \right) h_{fr}(\alpha_p)$$

Model Specification

Collisional pressure

► Employed as polydisperse model⁵

$$P_c = rac{eta}{
ho_p} \int \xi p_c(\xi) n(\xi) \, d\xi$$

⁴Boniou V. *et al.* (2023)
 ⁵Fox R.O. *et al.*; IJMF (2024)
 ⁶Santos A. *et al. et al.*; Mol. Phys. (1999)
 C. Stafford, R.O. Fox, A. Passalacqua

Particle pressure terms

Frictional pressure

Assumed the same as in the monodisperse case⁴

$$P_{fr} = C_{fr} \alpha_p^n \left(1 + n\alpha_f \right) h_{fr}(\alpha_p)$$

Model Specification

Collisional pressure

Employed as polydisperse model⁵

$$P_c = rac{eta}{
ho_p} \int \xi p_c(\xi) n(\xi) \, d\xi$$

Radial distribution function

Polydisperse expression used⁶

$$g(\xi,\zeta) = \frac{1}{\alpha_f} + \left(g_0(\alpha_f) - \frac{1}{\alpha_f}\right) \frac{\langle d_p^2 \rangle}{\langle d_p^2 \rangle} \frac{2d_p(\xi)d_p(\zeta)}{d_p(\xi) + d_p(\zeta)}$$

⁴Boniou V. et al. (2023)

⁵Fox R.O. *et al.*; IJMF (2024)

⁶Santos A. et al. et al.; Mol. Phys. (1999)

C. Stafford, R.O. Fox, A. Passalacqua

Model Specification

Outline

- 2 Model Specification
- 3 Perspective: granular flows

4 Summary

Dune contours

- Behaviour of different particle sizes within sedimentary flow of sand immersed in water
- ► Contours of the critical particle volume fraction for d_p = 297 micron, - d_p = 250 micron, d_p = 210 micron.

Model Specification

Dune velocity profiles

- Behaviour of different particle sizes within sedimentary flow of sand immersed in water
- Cross-sectional profiles of particle velocity magnitude at locations: x = 0.2286 m; x = 0.4572 m; x = 0.6858 m; for $d_p = 297$ micron, - $d_p = 250$ micron, - $d_p = 210$ micron.

Model Specification

Outline

- 2 Model Specification
- 3 Perspective: granular flows

Model Specification

Summary

Conclusions

- Density-based solver for polydisperse liquid-particle flows
- Barotropic equation of state used to specify fluid pressure for a weakly compressible flow
- Frictional and collisional pressures are important in capturing the transition from a dense particle suspension to granular flow

Summary

Conclusions

- Density-based solver for polydisperse liquid-particle flows
- Barotropic equation of state used to specify fluid pressure for a weakly compressible flow
- Frictional and collisional pressures are important in capturing the transition from a dense particle suspension to granular flow

Outlook

- Improve numerical flux splitting schemes to limit diffusion
- ► Replace correlations for frictional and collisional pressures with models from granular rheology

IOWA STATE UNIVERSITY

Center for Multiphase Flow Research and Education

Background

Model Specification

Perspective: granular flows

Summary

Questions

Thank you for your attention

cs9@iastate.edu

