Effectiveness factor estimates for general catalyst geometries

John P Wakefield¹ Jesse Capecelatro^{1,2} 2024 NETL Workshop on Multiphase Flow Science August 13, 2024

¹Department of Mechanical Engineering, University of Michigan

²Department of Aerospace Engineering, University of Michigan

Diffusion Limitations in Catalyst Particles

Image from Lattanzi et al, 2021.

- reaction rates are non-trivially temperature dependent
- effective rates may differ substantially from nominal rates
- it is straightforward to use modified reaction rates
- large numbers of particles
- many independent variables
 - particle shape
 - temperature
 - free stream concentration

Governing Equations

$$\frac{\partial}{\partial t}(\epsilon \rho_g Y) + \nabla \cdot (u \epsilon \rho_g Y) = \nabla \cdot (D \nabla (\epsilon \rho_g Y)) - \underbrace{k \epsilon \rho_g Y}_{\dot{\omega}}$$
$$\nabla Y \cdot \boldsymbol{n} = \text{Bi} (Y_{\infty} - Y)$$

$$\nabla^2 Y - \left(\sqrt{\frac{k}{D}}\right)^2 Y = 0$$
$$\frac{1}{\mathrm{Bi}} \nabla Y \cdot \mathbf{n} + Y = Y_{\infty}$$

- assume a single effective diffusivity *D* approximates diffusion through pores
- pores are small, so velocity is small and mass transport is diffusion dominated
- the time scale for reactions is small, approximate with the steady state solution

Why effectiveness factors?

If the reaction rate at a point in the particle is

 $\dot{\omega} = k\epsilon \rho_g Y$

We want the total conversion rate

$$\int_{\Omega} \dot{\omega} \, \mathrm{d}V = k \epsilon \rho_g \int_{\Omega} Y \, \mathrm{d}V.$$

If we define the effectiveness factor $\boldsymbol{\eta}$ as

$$\eta = \frac{1}{Y_{\infty} V_{\rho}} \int_{\Omega} Y \,\mathrm{d} V$$

then the total conversion in the particle is

$$\frac{1}{V_{\rho}}\int_{\Omega}\dot{\omega}\,\mathrm{d}V=\eta\,k\,\epsilon\rho_{g}\,Y_{\infty}.$$

Sphere

$$\eta = \frac{3}{ar_{p}} \left(a \operatorname{Bi}^{-1} + \frac{ar_{p} \tanh(ar_{p})}{ar_{p} - \tanh(ar_{p})} \right)^{-1}$$
Cylinder

$$\eta = \lim_{N,K \to \infty} \left(\underbrace{\sum_{n=0}^{N} \frac{16}{\pi^{2} r_{p} p_{n}(2n+1)^{2}} \frac{l_{1}(p_{n}r_{p})}{l_{0}(p_{n}r_{p})}}_{A_{N}} + \underbrace{\sum_{k=1}^{K} \frac{8}{h_{p} q_{k} j_{k}^{2}} \tanh\left(q_{k} \frac{h_{p}}{2}\right)}_{B_{K}} \right)$$
Rectangular Prism

$$\eta = \sum_{d \in \{x, y, z\}} \sum_{m,n} \frac{32}{\beta_{d,m,n} \pi^{4} \ell_{p,d}} \frac{1}{(2m+1)^{2} (2n+1)^{2}} \tanh\left(\beta_{d,m,n} \frac{\ell_{p,d}}{2}\right)$$

$$\beta_{d,m,n}^{2} = a^{2} + \sum_{d' \neq d} \left(\frac{\pi(2m+1)}{\ell_{p,d'}}\right)^{2}$$

Dimensional Quantities:

- geometry
 - chords [L]
 - volume [L³]
 - surface area [L²]
- $k/D [L^{-2}]$

$$\Lambda_a = 3\frac{V}{S}\sqrt{\frac{k}{D}}$$

Aris 1957

Chemical engineers worry about the *magnitude* of Λ_a rather than the precise value.

We aim to *quantify* the error in η .

The Estimates

Aris (1957)

$$\Lambda_a = \frac{3 V}{S} \sqrt{\frac{k}{D}}$$

$$rac{1}{\eta^{\mathrm{a}}} = rac{1}{\eta^{\mathrm{a}}_d} + rac{1}{\eta^{\mathrm{a}}_b}$$

where

$$\eta^{\rm a}_d = \frac{3}{\Lambda_a} \left(\coth \Lambda_a - \frac{1}{\Lambda_a} \right),$$

and

$$\eta_b^{\rm a} = \frac{3}{\Lambda_a^2} \operatorname{Bi}_a$$

Burghardt and Kubaczka (1996)

 $\Lambda_b = R_b \sqrt{\frac{k}{D}}$

$$rac{1}{\eta^{\mathrm{b}}} = rac{1}{\eta^{\mathrm{b}}_d} + rac{1}{\eta^{\mathrm{b}}_b}$$

where

$$\eta^{\mathrm{b}}_{d} = 2 \, rac{d+1}{igwedge_{b}} rac{I_{d+1}(igwedge_{b})}{I_{d}(igwedge_{b})}$$

and

$$\eta_b^{\mathrm{b}} = 2 \, \frac{(d+1) \operatorname{Bi}_b}{\Lambda_b^2}.$$

Burghardt and Kubaczka's Estimate - Inspiration

Cylinders

very common catalyst shape

• aspect ratio
$$\gamma = \frac{H}{2R}$$

• sphericity
$$\phi = \frac{\sqrt[3]{36\pi V}}{S}$$

Cylinders at Infinite Biot Number

Cylinders, Finite Biot Number, $\gamma = 4$, $\phi \approx 0.734$

- sphere perturbation
- smooth

$$x^{2} + \left(\frac{y}{\mathrm{El}}\right)^{2} + \left(\frac{z}{\mathrm{El}\,\mathrm{Fl}}\right)^{2} = 1$$

Does error correlate with sphericity?

$$\eta^{
m b}_{\it d} - \eta$$

What about a general shape?

Short communication

A simple method for particle shape generation with spherical harmonics

Deheng Wei, Jianfeng Wang, Budi Zhao *

Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong

$$\begin{bmatrix} x(\theta,\phi) \\ y(\theta,\phi) \\ z(\theta,\phi) \end{bmatrix} = \begin{bmatrix} \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} c_x^m Y_l^m(\theta,\phi) \\ \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} c_y^m Y_l^m(\theta,\phi) \\ \sum_{l=0}^{l_{\max}} \sum_{m=-l}^{l} c_z^m Y_l^m(\theta,\phi) \end{bmatrix}$$

Choose c_d^m at random in a manner that preserves certain metrics.

Random Granules

$$\eta_d^{\rm a} - \eta_d \ ({\sf blue}) \ \eta_d^{\rm b} - \eta_d \ ({\sf orange})$$

only low modes

only high modes

$$\eta_d^{\mathrm{a}} - \eta_d \; (\mathsf{blue}) \ \eta_d^{\mathrm{b}} - \eta_d \; (\mathsf{orange})$$

Use the Aris-type estimate, regardless of geometry.

National Academies Press

Thank you for listening.

Any questions?

(manuscript in preparation)

This research was supported by the Office of Naval Research under Award No. N00014-23-1-2369. Computational resources were provided by the Advanced Research Computing at the University of Michigan, Ann Arbor.

