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Summary 

This document summarizes our chronological understanding and implementation of the 

multicomponent or multispecies diffusion model in MFIX CFD code during FY25. Derivation of 

this model is provided here for completeness. Several simple case studies were conducted in 

MFIX and discussed here as part the code verification process. One case was conducted using 

both MFIX and Fluent CFD codes for added confidence in the code implementation. 

 

Derivation of species i diffusion molar flux ji in a multicomponent system 

The diffusion driving force in a multicomponent system is expressed by equation (2.1.15)1 

                                𝑑𝑖 = ∇⃗⃗⃗𝑋𝑖 = −∑
𝑋𝑖𝑋𝑗

𝒟𝑖𝑗

𝑛
𝑗=1 (𝑢⃗⃗𝑖 − 𝑢⃗⃗𝑗)                               (1)    

Dropping the vector notation and noting that: 𝑗𝑖 = 𝑐𝑖(𝑢𝑖 − 𝑢), let’s express equation (1) in 

terms of mole fluxes j (capital J is the mass flux): 

𝑑𝑖 =∑
𝑋𝑖𝑋𝑗
𝒟𝑖𝑗

(
𝑗𝑗
𝑐𝑋𝑗

−
𝑗𝑖
𝑐𝑋𝑖
)

𝑛

𝑗=1

 

𝑐𝑑𝑖 =∑(
𝑋𝑖𝑗𝑗 − 𝑋𝑗𝑗𝑖
𝒟𝑖𝑗

)

𝑛

𝑗=1

=∑(
𝑋𝑖𝑗𝑗
𝒟𝑖𝑗
)

𝑛

𝑗=1
𝑗≠𝑖

−∑(
𝑋𝑗𝑗𝑖
𝒟𝑖𝑗
)

𝑛

𝑗=1
𝑗≠𝑖

 

Since MFIX solves for n chemical species, it is tempting to solve the above equation as: 

𝑐𝑑𝑖 = 𝐴𝑖𝑗𝑋𝑗  with 𝐴𝑖𝑗 = ∑
𝑋𝑖

𝒟𝑖𝑗

𝑛
𝑗=1
𝑗≠𝑖

   and   𝐴𝑖𝑖 = −∑
𝑋𝑗

𝒟𝑖𝑗

𝑛
𝑗=1
𝑗≠𝑖

  . However, this matrix is singular as 

we can prove that |𝐴𝑖𝑗| = 0  (this was done for a 3x3 matrix). 

All literature examined so far solves for a (n-1) multicomponent system as 𝑗𝑛 = −∑ 𝑗𝑘
(𝑛−1)
𝑘=1 , thus 

 
1 Taylor, R., & Krishna, R. (1993). multicomponent mass transfer. New York: John Wiley & Sons, Inc. 
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𝑐𝑑𝑖 = ∑(
𝑋𝑖𝑗𝑗
𝒟𝑖𝑗
)

𝑛−1

𝑗=1
𝑗≠𝑖

−∑(
𝑋𝑖𝑗𝑗
𝒟𝑖𝑛

)

𝑛−1

𝑗=1
𝑗≠𝑖

−
𝑋𝑖𝑗𝑖
𝒟𝑖𝑛

−∑(
𝑋𝑗𝑗𝑖
𝒟𝑖𝑗
)

𝑛

𝑗=1
𝑗≠𝑖

= −∑(
𝑋𝑖
𝒟𝑖𝑛

−
𝑋𝑖
𝒟𝑖𝑗
) 𝑗𝑗

𝑛−1

𝑗=1
𝑗≠𝑖

−

(

 
 𝑋𝑖
𝒟𝑖𝑛

+∑(
𝑋𝑗
𝒟𝑖𝑗
)

𝑛

𝑗=1
𝑗≠𝑖 )

 
 
𝑗𝑖 

𝑐𝑑𝑖 = −𝐴𝑖𝑖𝑗𝑖 −∑𝐴𝑖𝑗𝑗𝑗

𝑛−1

𝑗=1
𝑗≠𝑖

 

𝐴𝑖𝑖 =
𝑋𝑖

𝒟𝑖𝑛
+ ∑ (

𝑋𝑗

𝒟𝑖𝑗
)𝑛

𝑗=1
𝑗≠𝑖

 ; 𝐴𝑖𝑗 = −𝑋𝑖 (
1

𝒟𝑖𝑗
−

1

𝒟𝑖𝑛
) 

The above derivation ended up with the exact same equations (2.1.20 – 2.1.22) in the textbook1 

with the matrix notation 𝐴 = 𝐵. The above shows the ease of deriving a multicomponent 

diffusion model with molar concentration fractions 𝑋𝑖. However, we must use mass fractions 𝑌𝑖 

per our CFD code (and others) approach. 

 

Derivation of species i diffusion mass flux Ji in a multicomponent system 

𝑑𝑖 = −∑ 𝑋𝑖
𝑛
𝑗=1 𝑋𝑗 (

𝑢⃗⃗⃗𝑖−𝑢⃗⃗⃗𝑗

𝒟𝑖𝑗
)          (1)    Corresponding to equation (2.1.15) 1. Dropping the vector 

notation and noting that 𝐽𝑖 = 𝜌𝑖(𝑢𝑖 − 𝑣) yields: 

𝑑𝑖 = −∑
𝑋𝑖𝑋𝑗
𝒟𝑖𝑗

(
𝐽𝑖
𝜌𝑖
−
𝐽𝑗
𝜌𝑗
)

𝑛

𝑗=1

 

𝑑𝑖 = ∇𝑋𝑖 = ∑
𝑋𝑖𝑋𝑗

𝒟𝑖𝑗
(
𝐽𝑗

𝜌𝑗
−
𝐽𝑖

𝜌𝑖
)𝑛

𝑗=1     (2)    corresponding to equation (8.9.6) (Fluent 12.0 Manual) 

Let’s modify equation (2) while noting that  𝜌𝑖 = 𝜌𝑌𝑖 =
𝜌𝑀𝑖

𝑀
𝑋𝑖   

−𝑑𝑖 =∑
𝑀𝑋𝑖𝑋𝑗
𝜌𝒟𝑖𝑗

(
𝐽𝑖
𝑀𝑖𝑋𝑖

−
𝐽𝑗
𝑀𝑗𝑋𝑗

)

𝑛

𝑗=1

 

−𝜌𝑑𝑖 = −∑
𝑀

𝒟𝑖𝑗

𝑋𝑖
𝑀𝑗

𝑛

𝑗=1
𝑗≠𝑖

𝐽𝑗 +∑
𝑀

𝒟𝑖𝑗

𝑋𝑗
𝑀𝑖

𝑛

𝑗=1
𝑗≠𝑖

 𝐽𝑖  
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Since MFIX solves for n chemical species, it is tempting to solve the above equation as: 

−𝜌𝑑𝑖 = 𝐴𝑖𝑗𝐽𝑗   with 𝐴𝑖𝑗 =
𝑀

𝒟𝑖𝑗

𝑋𝑖

𝑀𝑗
   and   𝐴𝑖𝑖 = −∑

𝑀

𝒟𝑖𝑗

𝑋𝑗

𝑀𝑖

𝑛
𝑗=1
𝑗≠𝑖

 . However, this matrix is also 

singular as we can show that |𝐴𝑖𝑗| = 0. 

Since we solve for (n-1) species, then: 

−𝜌𝑑𝑖 = −∑
𝑀

𝒟𝑖𝑗

𝑋𝑖
𝑀𝑗

𝑛−1

𝑗=1
𝑗≠𝑖

𝐽𝑗 −
𝑀

𝒟𝑖𝑛

𝑋𝑖
𝑀𝑛
𝐽𝑛 +∑

𝑀

𝒟𝑖𝑗

𝑋𝑗
𝑀𝑖

𝑛

𝑗=1
𝑗≠𝑖

 𝐽𝑖 

 

Since 𝐽𝑛 = −∑ 𝐽𝑗
𝑛−1
𝑗=1 = −∑ 𝐽𝑗

𝑛−1
𝑗=1
𝑗≠𝑖

− 𝐽𝑖 

−𝜌𝑑𝑖 = ∑(
𝑀

𝒟𝑖𝑛

𝑋𝑖
𝑀𝑛

−
𝑀

𝒟𝑖𝑗

𝑋𝑖
𝑀𝑗
)

𝑛−1

𝑗=1
𝑗≠𝑖

𝐽𝑗 +

(

 
 𝑀

𝒟𝑖𝑛

𝑋𝑖
𝑀𝑛

+∑
𝑀

𝒟𝑖𝑗

𝑋𝑗
𝑀𝑖

𝑛

𝑗=1
𝑗≠𝑖 )

 
 
 𝐽𝑖  

Simplifying the above equation to read: 

−𝜌𝑑𝑖 = 𝐴𝑖𝑗𝐽𝑗 + 𝐴𝑖𝑖 𝐽𝑖 

𝐴𝑖𝑖 =
𝑀

𝒟𝑖𝑛

𝑋𝑖
𝑀𝑛

+∑
𝑀

𝒟𝑖𝑗

𝑋𝑗
𝑀𝑖

𝑛

𝑗=1
𝑗≠𝑖

 

𝐴𝑖𝑗 =
𝑀

𝒟𝑖𝑛

𝑋𝑖
𝑀𝑛

−
𝑀

𝒟𝑖𝑗

𝑋𝑖
𝑀𝑗

 

 

Note that the same equations are given in the Fluent manual as equations (8.9-9 and 8.9-10): 

𝐴𝑖𝑖 = −

(

 
 𝑀

𝒟𝑖𝑛

𝑋𝑖
𝑀𝑛

+∑
𝑀

𝒟𝑖𝑗

𝑋𝑗
𝑀𝑖

𝑛

𝑗=1
𝑗≠𝑖 )

 
 

 

𝐴𝑖𝑗 = 𝑋𝑖 (
1

𝒟𝑖𝑗

𝑀

𝑀𝑗
−
1

𝒟𝑖𝑛

𝑀

𝑀𝑛
) 

The overall negative sign in above equations could be just propagated from another B matrix 

used in Fluent, which has to do with the transformation of gradient ∇𝑋𝑖 to ∇𝑌𝑖 to do next. 
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Let’s now shift attention to the LHS of equation (1) and noting that 𝑑𝑖 = ∇𝑋𝑖. The relation 

between mole fraction 𝑋𝑖 and mass fraction 𝑌𝑖 is simply: 𝑋𝑖 =
𝑀

𝑀𝑖
𝑌𝑖, with 

1

𝑀
= ∑

𝑌𝑗

𝑀𝑗

𝑛
𝑗=1 . Thus: 

∇𝑌𝑖 =
𝑀𝑖
𝑀
∇𝑋𝑖 +𝑀𝑖𝑋𝑖∑

∇𝑌𝑗
𝑀𝑗

𝑛

𝑗=1

 

d𝑖 = ∇𝑋𝑖 =
𝑀

𝑀𝑖
∇𝑌𝑖 −𝑀𝑋𝑖∑

∇𝑌𝑗
𝑀𝑗

𝑛

𝑗=1

 

−∇𝑋𝑖 = −(
𝑀

𝑀𝑖
(1 − 𝑋) +

𝑀𝑋𝑖
𝑀𝑛

) ∇𝑌𝑖 −∑(
𝑀𝑋𝑖
𝑀𝑛

−
𝑀𝑋𝑖
𝑀𝑗
)∇𝑌𝑗

𝑛−1

𝑗=1
𝑗≠𝑖

 

 

Using Fluent notation, we can write above equation as: −∇𝑋 = −𝐵 ∇𝑌 

𝑖 ≠ 𝑗      𝐵𝑖𝑗 = 𝑋𝑖 (
𝑀

𝑀𝑛
−
𝑀

𝑀𝑗
) 

𝑖 = 𝑗      𝐵𝑖𝑗 =
𝑀

𝑀𝑖
(1 − 𝑋) +

𝑀𝑋𝑖
𝑀𝑛

 

Here again, there is a sign difference between the B matrices derived here and in Fluent. Thus, 

this sign will cancel in the following expression written in matrix notation: 

 −𝜌∇𝑋 = −𝜌𝐵∇𝑌 = 𝐴𝐽. And the diffusive mass flux 𝐽 is obtained simply as:  𝐽 = −𝜌𝐴−1𝐵∇𝑌 =

−𝜌𝐷∇𝑌, or by using index notation: 𝐽𝑖 = −∑ 𝜌𝐷𝑖𝑗
𝑛−1
𝑗=1 ∇𝑌𝑗, where 𝐷𝑖𝑗 are the Fickian diffusion 

coefficients. The mass diffusion flux contributes to the species mass fraction conservation 

equation as:  
𝜕𝜌𝑌𝑖

𝜕𝑡
+ ∇. 𝜌𝑣⃗𝑌𝑖 = −∇. 𝐽𝑖 + 𝑅𝑖. 

 

Comparison of computed Fickian diffusion coefficients with published data 

Let’s compare our computed Fickian diffusion coefficient 𝐷𝑖𝑗 (not to be confused with molecular 

or Maxwell-Stefan coefficients 𝒟𝑖𝑗) obtained for a multicomponent diffusion case in Example 

4.2.5 on Page 86 of Taylor and Krishna textbook. It involves diffusion of CO (1), H2 (2), CH4 (3), 

and H2O (4) at the molar concentrations of x1 = 0.05, x2 = 0.75328, x3 = 0.09809, x4 = 0.09809. 

The Maxwell-Stefan coefficients were taken from the textbook and not computed from kinetic 

theory of low-density gases. This was done for accurate comparison between the two methods. 

Taylor and Krishna obtained the following results: 
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 𝐷𝑖𝑗 = [
8.3828 −1.4960 0.0469
0.4612 13.5835 −0.1589
−0.1531 −1.6809 8.5718

] × 10−6𝑚2 𝑠⁄  

We computed the following in MFIX: 𝐷𝑖𝑗 = [
8.3829 −1.4960 0.04695
0.4612 13.5835 −0.1589
−0.1531 −1.6809 8.5718

] × 10−6𝑚2 𝑠⁄  

The dominance of the diagonal terms is evident but is not always the case as seen in other 

examples in the textbook. The agreement is almost exact which was expected. The molecular 

mass of the diffusing elements and the transformation from mole fraction to mass fraction was 

verified to be almost identical. 

 

Model implementation in MFIX, a ternary diffusion test case in a Loschmidt tube 

The ternary: CH4 (1) – Ar  (2)– H2 (3) diffusion system is shown in the figure below and consists 

of a closed tube divided into two regions, top and bottom, where the initial concentrations are 

set differently as shown in the figure. Initially, the separation between these two regions is 

removed and species diffuse freely at isothermal condition. The purpose of this exercise is to 

compute the transient space-averaged concentration of species in the upper and lower parts of 

the Loschmidt tube. Note that the domain is wall-bounded and essentially 1D. 

 

 

 

 

 

 

 

 

 

 

 

Figure: Ternary diffusion example taken from Taylor and Krishna (example 5.5.1 page 112-114). 

 

Height 

= 2*L 

t = 0 t > 0 
t = infinity 

x1 = 0.0 

x2 = 0.509 

x3 = 0.491 

x1 = 0.515 

x2 = 0.485 

x3 = 0.0 

b
o

tt
o

m
 

to
p
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Figure: Results obtained with the dilute mixture approximation in MFIX. 

 

Figure: Results obtained with the new multicomponent diffusion model. 

The above figure shows a comparison of MFIX computation results with those obtained using 

Fluent2 and experimental data. For the mole fraction of methane profiles, the results obtained 

with MFIX and Fluent are almost identical and can’t be noticed from the graph. Slightly more 

noticeable difference between the two software can be seen for the mole fraction profiles of 

Argon. It is interesting that an analytical solution obtained by Taylor and Krishna shows better 

agreement with measurements. 

 

 

 
2 Thanks to Hossain Aziz for running the Fluent simulation at NETL. 
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Implementation of Maxwell-Stefan diffusion coefficients from kinetic theory 

A kinetic theory model for low density gases is available in the literature3 and was implemented 

in MFIX. It only requires the assumption of the validity of the well-known Lennard-Jones 

potential between two species i, j: 𝜑(𝑟) = 4𝜖𝑖𝑗 [(
𝜎𝑖𝑗

𝑟
)
12
− (

𝜎𝑖𝑗

𝑟
)
6
]. An approximation for ideal 

gas provides the following formula for calculating the diffusivity:  

𝒟𝑖𝑗 = 0.0018583√𝑇
3 (

1

𝑀𝑖
+

1

𝑀𝑗
)

1

𝑃𝜎𝑖𝑗Ω𝐷,𝑖𝑗
  

With 𝒟𝑖𝑗 expressed in (cm2/s), and T (K), P (atm), 𝜎𝑖𝑗  (Å). The potential pair parameters 𝜖𝑖𝑗 and 

𝜎𝑖𝑗 could be obtained from individual parameters following: 𝜎𝑖𝑗 =
1

2
(𝜎𝑖 + 𝜎𝑗), 𝜖𝑖𝑗 = √𝜖𝑖 × 𝜖𝑗. 

The individual potential parameters are available for many molecules in the literature2. 

Finally, the collision integral can be expressed following a curve fitting of data in equation E.2-2 

of BSL textbook: Ω𝐷,𝑖𝑗 =
1.06036

𝑇∗0.15610
+

0.19300

𝑒𝑥𝑝(0.47635𝑇∗)
+

1.03587

𝑒𝑥𝑝(1.52996𝑇∗)
+

1.76474

𝑒𝑥𝑝(3.89411𝑇∗)
 

 

The results obtained with this formula for 𝒟𝑖𝑗 were compared with a similar formula obtained 

online4  with very good agreement. For example, at normal conditions of 1 atm and 273 K:  

𝒟𝑂2−𝐻2= 69.1e-6 and 68.9e-6 m2/s; 𝒟𝑂2−𝐶𝑂= 17.52e-6 and 17.47e-6 m2/s were obtained with 

MFIX and online5, respectively. 

Another example at higher pressure and temperature conditions of 2 atm and 310 K:  

𝒟𝑂2−𝐻2= 42.98e-6 and 42.88e-6 m2/s; 𝒟𝑂2−𝐶𝑂= 10.97e-6 and 11.00e-6 m2/s were also obtained 

with MFIX and the reference [3], respectively. 

 

Binary and ternary gas diffusion in a Stefan tube 

 

 

 

 

 

 
3 R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot (aka BSL). Transport Phenomena-2nd ed., Wiley, NY (2002). 
4 https://demonstrations.wolfram.com/BinaryDiffusionCoefficientsForGases 
5 See online reference above. 

Liquid A 

Vapor A 

Entrainment Gas B A + B 

z = 0 

z = h 

https://demonstrations.wolfram.com/BinaryDiffusionCoefficientsForGases
https://demonstrations.wolfram.com/BinaryDiffusionCoefficientsForGases
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We first derive an analytical solution for the case of binary diffusion in a Stefan tube shown 

below, then we compare the results obtained with this method and MFIX numerical simulation. 

Assumptions for analytical solution: Steady-Flow; 1D in the z-direction; at z = 0, yA = yA
0 

equilibrium at liquid-vapor interface; at z = h, yA = yA
h = 0.  

For a binary system, Fick’s law for diffusion can be written as:  𝐽𝐴 = −𝜌𝒟𝐴𝐵
𝜕𝑌𝐴

𝜕𝑧
, which can also 

be obtained from the multicomponent diffusion model developed previously and starting with: 

 −𝜌
𝜕𝑋𝐴

𝜕𝑧
= −

𝑀

𝒟𝐴𝐵

𝑋𝐴

𝑀𝐵
𝐽𝐵 +

𝑀

𝒟𝐴𝐵

𝑋𝐵

𝑀𝐴
 𝐽𝐴, and while recognizing that 𝐽𝐵 = −𝐽𝐴, we obtain after little 

manipulation: −𝜌𝒟𝐴𝐵
𝜕𝑋𝐴

𝜕𝑧
= 𝑀 (

𝑋𝐴

𝑀𝐵
+
1−𝑋𝐴

𝑀𝐴
)  𝐽𝐴. 

From previous analysis, we showed that: 
𝜕𝑌𝐴

𝜕𝑧
=
𝑀𝐴

𝑀

𝜕𝑋𝐴

𝜕𝑧
+𝑀𝐴𝑋𝐴 (

𝜕𝑌𝐴

𝑀𝐴𝜕𝑧
+

𝜕𝑌𝐵

𝑀𝐵𝜕𝑧
), and after some 

algebraic manipulation we obtain: 
𝜕𝑋𝐴

𝜕𝑧
=

𝑀

𝑀𝐴𝑀𝐵
(𝑀𝐵(1 − 𝑋𝐴) + 𝑀𝐴𝑋𝐴)

𝜕𝑌𝐴

𝜕𝑧
 

Therefore, we obtain the well-known Fick’s law: −𝜌𝒟𝐴𝐵
𝜕𝑌𝐴

𝜕𝑧
=  𝐽𝐴. So we just demonstrated that 

the multicomponent diffusion model reduces to Fick’s law for a binary system. Furthermore, the 

code implementation of the same multicomponent model works for binary mixture by reducing 

to Fick’s law with zero off-diagonal fluxes, and so no special treatment is done for the binary 

mixture case. An analytical solution for the diffusion in Stefan tube can be obtained by 

combining the previously derived Fick’s law while also considering the species mass fraction 

conservation equation: 
𝜕𝜌𝑣𝑌𝐴

𝜕𝑧
= −

𝜕𝐽𝐴

𝜕𝑧
. The gas velocity is deduced from the steady gas 

continuity equation: 
𝜕𝜌𝑣

𝜕𝑧
= 𝜌

𝜕𝑣

𝜕𝑧
= 0 for constant gas density. Thus, the gas velocity is a constant: 

𝑣 = 𝑣0. We can eliminate the flux to obtain: 
𝜕2𝑌𝐴

𝜕𝑧2
=

𝑣0

𝒟𝐴𝐵

𝜕𝑌𝐴

𝜕𝑧
. By a change of variable assuming 

𝜉 =
𝜕𝑌𝐴

𝜕𝑧∗
, 𝑧 = ℎ𝑧∗, and 𝛼 =

𝑣0ℎ

𝒟𝐴𝐵
 and then we obtain a solution for: 𝜉 = 𝑘𝑒𝛼𝑧

∗
and a final 

solution for mass fraction as: 𝑌𝐴 =
𝑌𝐴

0

1−𝑒𝛼
(𝑒𝛼𝑧

∗
−𝑒𝛼), which was subjected to boundary 

conditions already mentioned. A similar analytical solution was derived for molar fractions 

and fluxes and is available online6. Note that this solution is for 𝛼 ≠ 0. For 𝛼 = 0 (no 

convection), the solution for 𝑌𝐴 is a linear function of 𝑧 derived from 
𝜕2𝑌𝐴

𝜕𝑧2
= 0. 

To set-up this case in MFIX, an inlet condition with concentration 𝑌𝐴
0 and velocity 𝑣0 

subjected to the dimensionless number 𝛼 = 5 was used (𝒟𝐴𝐵=1e-5 m2/s, h = 0.24 m, 𝑣0 = 
2.08e-4 m/s). An extra pressure drop (Darcy’s law) was added at the top of the Stefan tube 

to avoid gas B entering the tube (semipermeable surfaces block species diffusion and were 

avoided). The MFIX simulation results are shown below and compare reasonably well with 

the analytical solution. The reason for using a large value for 𝛼 (convection dominant) is 

 
6 https://www3.nd.edu/~dtl/cbe30356/notes/l17/lecture17.pdf 
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the absence of diffusion at inlets in MFIX. A constant gas density (the value is not important 

as it cancels out) was set in MFIX to mimic the analytical derivation.  

Stefan tube for a ternary system of acetone (1), methanol (2), and air (3) was conducted 

experimentally and described in example 2.1.1 on page 21 of Taylor and Krishna textbook. We 

use the same approach as in the binary system described above. The vapor mixture of acetone 

and methanol was fed at the bottom inlet at a guessed gas velocity of 2e-4 m/s (the rate of 

evaporation and 𝑣0 are not known) that provided good agreement with experimental data 

found in the graph below. 

 

Analytical solution compared with simulation results for binary species diffusion in Stefan tube. 

 

 

MFIX simulation results compared with experimental data for ternary diffusion in a Stefan tube. 
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Implementation of thermal diffusion flux in MFIX 

The numerical implementation of the thermal diffusion flux is straightforward due to the 

already implemented multicomponent diffusion flux. The generalized flux that includes thermal 

diffusion can be obtained by slightly modifying the multicomponent flux as: 

 𝐽𝑖 = −∑ 𝜌𝐷𝑖𝑗
𝑛−1
𝑗=1 ∇𝑌𝑗 − 𝐷𝑇,𝑖

∇T

𝑇
 

An expression for the thermal diffusion provided in the Fluent 13 manual and mentioned in the 

literature7 as an approximation of this coefficient: 

𝐷𝑇,𝑖 = −2.59 × 10
−7𝑇0.659 (

𝑀𝑖
0.511𝑋𝑖

∑ 𝑀𝑗
0.511𝑋𝑗

𝑛
𝑗=1

− 𝑌𝑖)(
∑ 𝑀𝑗

0.511𝑋𝑗
𝑛
𝑗=1

∑ 𝑀𝑗
0.489𝑋𝑗

𝑛
𝑗=1

) 

This form of the thermal diffusion was tested for a diffusion tube with a binary mixture of Air-

Acetone, initially fully mixed with a mass fraction 𝑌𝐴𝑐𝑒𝑡𝑜𝑛𝑒 = 𝑌𝐴𝑖𝑟 = 0.5 subject to a constant 

temperature difference of 1000 K between a cold and hot wall.  The initial uniform 

concentration of species does not change if we ignore the contribution of thermal diffusion. 

However, accounting for the thermal diffusion creates a species mass fraction gradient with 

larger concentration of the heavy species (Acetone) at the cold wall. For this case, the Acetone-

Air diffusion coefficient was calculated from kinetic theory model described earlier with 

Lennard-Jones parameters determined from viscosity data8. 

 

Figure: Effect of thermal diffusion in a binary Acetone-Air system 

 
7 Kennett K Kuo and Ragini Acharya. Applications of Turbulent and Multiphase Combustion, 2012, John Wiley & 
Sons, Inc. See page 267, equation 4.159. 
8 Robert C Reid, John M Prausnitz and Thomas K Sherwood. The properties of gases and liquids, 1977, McGraw-Hill, 
Inc. See Page 678, Appendix C. 
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Solving for (n-1) species equations in MFIX: Reacting flows 

Solving for (n-1) gas species mass fraction conservation equations is required due to the 

derivation of the multicomponent diffusion model. Here we verify that such modification to the 

algorithm in MFIX will not generate errors in reacting flows with/without mass transfer between 

phases. The multicomponent fluxes are implemented in MFIX as source terms in 

solve_species_eq.f subroutine where the loop of n species was modified to a loop over (n-1) 

species with the last species mass fraction calculated as: 𝑌𝑛 = 1 − ∑ 𝑌𝑖
𝑛−1
𝑖=1 . 

It is simple to note that when the stiff chemistry algorithm is invoked, the reaction rates and 

mass transfer between phases is not used in solve_species_eq.f subroutine but rather in the 

stiff chemistry subroutines. Thus, the results obtained with the stiff chemistry solver are 

identical for both approaches, i.e solving for either (n) or (n-1) species. We have checked that 

this is the case with the Silane decomposition tutorial case, and the results are not shown here. 

The Silane decomposition case mentioned above will not work without the stiff chemistry solver 

due to very large pre-exponent reaction rates. A reduction of 6 orders of magnitude in all gas-

phase homogeneous reactions was required to make this case run without stiff chemistry solver. 

As shown in the SiH4 reacting gas-phase species mass fraction and Si solids-phase species mass 

fraction variation with time, the results solving for (n) or (n-1) species equations are identical. 

Furthermore, considering either an inert species (N2 and Al2O3) or a reacting species (SiH4 and 

Si) as the nth species (i.e. not solving for this nth species), show almost identical results as seen 

in the figures below. These results are understandable because MFIX algorithm was already 

designed to work for (n) species, even inert species. Let’s explain further: In this Silan 

decomposition case, the solids-phase consisted initially of 100% inert species Al2O3. A mass 

transfer between gas-solids phases deposits Si on the Al2O3 particle effectively reducing the 

mass fraction of Al2O3. MFIX solves for the inert Al2O3 mass fraction and must, thus, compute 

a reduction in its mass fraction. This is done in MFIX by having a mass transfer term in all species 

equations (even inert ones), and that’s the reason why the new algorithm works as well as the 

previous algorithm solving for (n) species mass fractions. 



12 
 

 

Figure: Transient profile of mass fraction of deposited Si  

 

 

 

Figure: Transient profile of mass fraction of reactant SiH4  


