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Summary

This document summarizes our chronological understanding and implementation of the
multicomponent or multispecies diffusion model in MFIX CFD code during FY25. Derivation of
this model is provided here for completeness. Several simple case studies were conducted in
MFIX and discussed here as part the code verification process. One case was conducted using
both MFIX and Fluent CFD codes for added confidence in the code implementation.

Derivation of species i diffusion molar flux j; in a multicomponent system

The diffusion driving force in a multicomponent system is expressed by equation (2.1.15)*
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Dropping the vector notation and noting that: j; = c;(u; — u), let’s express equation (1) in
terms of mole fluxes j (capital J is the mass flux):
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Since MFIX solves for n chemical species, it is tempting to solve the above equation as:
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we can prove that |Al-j| = 0 (this was done for a 3x3 matrix).
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All literature examined so far solves for a (n-1) multicomponent system as j, = — Zg’:_ll)jk, thus

! Taylor, R., & Krishna, R. (1993). multicomponent mass transfer. New York: John Wiley & Sons, Inc.
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The above derivation ended up with the exact same equations (2.1.20 — 2.1.22) in the textbook!
with the matrix notation A = B. The above shows the ease of deriving a multicomponent
diffusion model with molar concentration fractions X;. However, we must use mass fractions Y;
per our CFD code (and others) approach.

Derivation of species i diffusion mass flux J; in a multicomponent system

c_i)i = — 7=1Xl- X; (u;)_:J> (1) Corresponding to equation (2.1.15) L. Dropping the vector

notation and noting that J; = p;(u; — v) yields:
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d, =VX; = Z}?ﬂXD"—? (;]7_], — ﬁ) (2) corresponding to equation (8.9.6) (Fluent 12.0 Manual)

Let’s modify equation (2) while noting that p; = pY; = "VMiXi
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Since MFIX solves for n chemical species itis tempting to soIve the above equation as:
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singular as we can show that |Al-j| = 0.

Since we solve for (n-1) species, then:
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Simplifying the above equation to read:
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The overall negative sign in above equations could be just propagated from another B matrix
used in Fluent, which has to do with the transformation of gradient VX; to VY; to do next.



Let’s now shift attention to the LHS of equation (1) and noting that d; = VX;. The relation
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between mole fraction X; and mass fraction Y; is simply: X; = ﬁYi, with i ’}le—’_. Thus:
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Using Fluent notation, we can write above equation as: —=VX = —B VY
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Here again, there is a sign difference between the B matrices derived here and in Fluent. Thus,
this sign will cancel in the following expression written in matrix notation:

—pVX = —pBVY = A]. And the diffusive mass flux J is obtained simply as: ] = —pA~1BVY =
—pDVY, or by using index notation: J; = — ;‘;11 pD;; VY;, where D;; are the Fickian diffusion
coefficients. The mass diffusion flux contributes to the species mass fraction conservation

equation as: % +V.pdY; = —V.J; + R;.

Comparison of computed Fickian diffusion coefficients with published data

Let’s compare our computed Fickian diffusion coefficient D;; (not to be confused with molecular
or Maxwell-Stefan coefficients D; ;) obtained for a multicomponent diffusion case in Example
4.2.5 on Page 86 of Taylor and Krishna textbook. It involves diffusion of CO (1), H2 (2), CH4 (3),
and H20 (4) at the molar concentrations of x; = 0.05, x, = 0.75328, x3 = 0.09809, x4 = 0.09809.
The Maxwell-Stefan coefficients were taken from the textbook and not computed from kinetic
theory of low-density gases. This was done for accurate comparison between the two methods.

Taylor and Krishna obtained the following results:
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8.3828 —1.4960 0.0469
D;; =] 04612 13.5835 —0.1589|x 107°m?/s
—0.1531 -1.6809 8.5718

8.3829 —1.4960 0.04695
04612 13.5835 —0.1589[x 107¢m?/s
—0.1531 -1.6809 8.5718

We computed the following in MFIX: D;; =

The dominance of the diagonal terms is evident but is not always the case as seen in other
examples in the textbook. The agreement is almost exact which was expected. The molecular
mass of the diffusing elements and the transformation from mole fraction to mass fraction was
verified to be almost identical.

Model implementation in MFIX, a ternary diffusion test case in a Loschmidt tube

The ternary: CH4 (1) — Ar (2)—-H2 (3) diffusion system is shown in the figure below and consists
of a closed tube divided into two regions, top and bottom, where the initial concentrations are
set differently as shown in the figure. Initially, the separation between these two regions is
removed and species diffuse freely at isothermal condition. The purpose of this exercise is to
compute the transient space-averaged concentration of species in the upper and lower parts of
the Loschmidt tube. Note that the domain is wall-bounded and essentially 1D.
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Figure: Ternary diffusion example taken from Taylor and Krishna (example 5.5.1 page 112-114).
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Figure: Results obtained with the dilute mixture approximation in MFIX.
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Figure: Results obtained with the new multicomponent diffusion model.

1 1.5 2
Time (hr)

The above figure shows a comparison of MFIX computation results with those obtained using
Fluent? and experimental data. For the mole fraction of methane profiles, the results obtained
with MFIX and Fluent are almost identical and can’t be noticed from the graph. Slightly more
noticeable difference between the two software can be seen for the mole fraction profiles of
Argon. It is interesting that an analytical solution obtained by Taylor and Krishna shows better
agreement with measurements.

2 Thanks to Hossain Aziz for running the Fluent simulation at NETL.
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Implementation of Maxwell-Stefan diffusion coefficients from kinetic theory

A kinetic theory model for low density gases is available in the literature® and was implemented

in MFIX. It only requires the assumption of the validity of the well-known Lennard-Jones
12 \6
potential between two species i, j: (1) = 4€;; [(%) — (%) ] An approximation for ideal

gas provides the following formula for calculating the diffusivity:

Dyj = 0.0018583 |T3 (i + i);
M; Mj/) PoijQp ij

With D;; expressed in (cm?/s), and T (K), P (atm), 0 (A). The potential pair parameters €;; and
a;j could be obtained from individual parameters following: g;; = %(ai + aj), €ij = /€ X €.

The individual potential parameters are available for many molecules in the literature?.

Finally, the collision integral can be expressed following a curve fitting of data in equation E.2-2

of BSL textbook: Qp ;; = —ooo0 0.19300 1.03587 1.76474
. D,ij — T*0.15610 exp(0.47635T*) exp(1.52996T*) eXP(3.894-11T*)

The results obtained with this formula for D;; were compared with a similar formula obtained
online* with very good agreement. For example, at normal conditions of 1 atm and 273 K:

Do,—n,= 69.1e-6 and 68.9e-6 m?/s; Dy, _co= 17.52e-6 and 17.47e-6 m*/s were obtained with
MFIX and online®, respectively.

Another example at higher pressure and temperature conditions of 2 atm and 310 K:

Do,-n,=42.98e-6 and 42.88e-6 m*/s; Dy, _co= 10.97e-6 and 11.00e-6 m*/s were also obtained
with MFIX and the reference [3], respectively.

Binary and ternary gas diffusion in a Stefan tube

— > > )
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3 R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot (aka BSL). Transport Phenomena-2nd ed., Wiley, NY (2002).
4 https://demonstrations.wolfram.com/BinaryDiffusionCoefficientsForGases
5 See online reference above.
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We first derive an analytical solution for the case of binary diffusion in a Stefan tube shown
below, then we compare the results obtained with this method and MFIX numerical simulation.

Assumptions for analytical solution: Steady-Flow; 1D in the z-direction; at z= 0, ya = ya°
equilibrium at liquid-vapor interface; at z=h, ya = ya" = 0.

For a binary system, Fick’s law for diffusion can be written as: J, = —pDyp ; which can also

be obtained from the multicomponent diffusion model developed previously and starting with:

d | |
—p Za o T XA] +—M X5 ]A, and while recognizing that J; = —J,, we obtain after little
0z DABM DA
manipulation: —pDABﬂ = M(XA 1- XA) I
0z Mg

: . Y, _ My ox ay oy
From previous analysis, we showed that: —£ A =444 M, X, ( A4 4 —B) and after some
M oz Madz = Mpdz
. . . . 0Xgx aYA
algebraic manipulation we obtain: —= = —— (Mg(1 — X,) + MAXA)

0z MyMp

oy .
Therefore, we obtain the well-known Fick’s law: —pD,5 —2 = J,. So we just demonstrated that

0z
the multicomponent diffusion model reduces to Fick’s law for a binary system. Furthermore, the

code implementation of the same multicomponent model works for binary mixture by reducing
to Fick’s law with zero off-diagonal fluxes, and so no special treatment is done for the binary
mixture case. An analytical solution for the diffusion in Stefan tube can be obtained by

combining the previously derived Fick’s law while also considering the species mass fraction

i . d d
conservation equation: %ZYA = a]A The gas velocity is deduced from the steady gas

- . d d
continuity equation: % =p a—z = 0 for constant gas density. Thus, the gas velocity is a constant:

62YA_ Yo_ aY A

= . By a change of variable assuming
0z2  Dyp 0z

v = v,y. We can eliminate the flux to obtain:

ay . . . .

§= azf’ z=hz",anda = ;—0 and then we obtain a solution for: { = ke®* and a final
AB

solution for mass fraction as: Y, = (e“z —e“) which was subjected to boundary

1- e“
conditions already mentioned. A similar analytical solution was derived for molar fractions
and fluxes and is available online®. Note that this solution is for ¢ # 0. Fora = 0 (no

. . . . . . 2%y
convection), the solution for Y, is a linear function of z derived from 6ZZA =0.

To set-up this case in MFIX, an inlet condition with concentration Y,° and velocity v,
subjected to the dimensionless number ¢ = 5 was used (D g=1e-5m?/s, h=0.24 m, v, =
2.08e-4 m/s). An extra pressure drop (Darcy’s law) was added at the top of the Stefan tube
to avoid gas B entering the tube (semipermeable surfaces block species diffusion and were
avoided). The MFIX simulation results are shown below and compare reasonably well with
the analytical solution. The reason for using a large value for a¢ (convection dominant) is

5 https://www3.nd.edu/~dtl/cbe30356/notes/117/lecturel7.pdf
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the absence of diffusion at inlets in MFIX. A constant gas density (the value is not important
as it cancels out) was set in MFIX to mimic the analytical derivation.

Stefan tube for a ternary system of acetone (1), methanol (2), and air (3) was conducted
experimentally and described in example 2.1.1 on page 21 of Taylor and Krishna textbook. We
use the same approach as in the binary system described above. The vapor mixture of acetone
and methanol was fed at the bottom inlet at a guessed gas velocity of 2e-4 m/s (the rate of
evaporation and v, are not known) that provided good agreement with experimental data
found in the graph below.
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Implementation of thermal diffusion flux in MFIX

The numerical implementation of the thermal diffusion flux is straightforward due to the
already implemented multicomponent diffusion flux. The generalized flux that includes thermal
diffusion can be obtained by slightly modifying the multicomponent flux as:

_ T
Ji = =X%1 pDy; VY, — Dri—

An expression for the thermal diffusion provided in the Fluent 13 manual and mentioned in the
literature’ as an approximation of this coefficient:

0.511 n 0511
Dy; = —2.59 x 107770659 <M - y.) <M)
! ' 0511 i 0489
;'l=1 M= X; ?:1 M X;

This form of the thermal diffusion was tested for a diffusion tube with a binary mixture of Air-
Acetone, initially fully mixed with a mass fraction Y, .erone = Yair = 0.5 subject to a constant
temperature difference of 1000 K between a cold and hot wall. The initial uniform
concentration of species does not change if we ignore the contribution of thermal diffusion.
However, accounting for the thermal diffusion creates a species mass fraction gradient with
larger concentration of the heavy species (Acetone) at the cold wall. For this case, the Acetone-
Air diffusion coefficient was calculated from kinetic theory model described earlier with
Lennard-Jones parameters determined from viscosity data®.
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Figure: Effect of thermal diffusion in a binary Acetone-Air system

7 Kennett K Kuo and Ragini Acharya. Applications of Turbulent and Multiphase Combustion, 2012, John Wiley &
Sons, Inc. See page 267, equation 4.159.

8 Robert C Reid, John M Prausnitz and Thomas K Sherwood. The properties of gases and liquids, 1977, McGraw-Hill,
Inc. See Page 678, Appendix C.
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Solving for (n-1) species equations in MFIX: Reacting flows

Solving for (n-1) gas species mass fraction conservation equations is required due to the
derivation of the multicomponent diffusion model. Here we verify that such modification to the
algorithm in MFIX will not generate errors in reacting flows with/without mass transfer between
phases. The multicomponent fluxes are implemented in MFIX as source terms in
solve_species_eq.f subroutine where the loop of n species was modified to a loop over (n-1)
species with the last species mass fraction calculated as: ¥, = 1 — Y11 Y.

It is simple to note that when the stiff chemistry algorithm is invoked, the reaction rates and
mass transfer between phases is not used in solve_species_eq.f subroutine but rather in the
stiff chemistry subroutines. Thus, the results obtained with the stiff chemistry solver are
identical for both approaches, i.e solving for either (n) or (n-1) species. We have checked that
this is the case with the Silane decomposition tutorial case, and the results are not shown here.

The Silane decomposition case mentioned above will not work without the stiff chemistry solver
due to very large pre-exponent reaction rates. A reduction of 6 orders of magnitude in all gas-
phase homogeneous reactions was required to make this case run without stiff chemistry solver.
As shown in the SiH4 reacting gas-phase species mass fraction and Si solids-phase species mass
fraction variation with time, the results solving for (n) or (n-1) species equations are identical.
Furthermore, considering either an inert species (N2 and Al203) or a reacting species (SiH4 and
Si) as the nth species (i.e. not solving for this nth species), show almost identical results as seen
in the figures below. These results are understandable because MFIX algorithm was already
designed to work for (n) species, even inert species. Let’s explain further: In this Silan
decomposition case, the solids-phase consisted initially of 100% inert species Al203. A mass
transfer between gas-solids phases deposits Si on the Al203 particle effectively reducing the
mass fraction of Al203. MFIX solves for the inert AI203 mass fraction and must, thus, compute
a reduction in its mass fraction. This is done in MFIX by having a mass transfer term in all species
equations (even inert ones), and that’s the reason why the new algorithm works as well as the
previous algorithm solving for (n) species mass fractions.
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Figure: Transient profile of mass fraction of deposited Si
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