From 09286d784d7322216fd40a317937cb97326291c5 Mon Sep 17 00:00:00 2001
From: William Fullmer <william.fullmer@netl.doe.gov>
Date: Wed, 13 Nov 2019 10:50:06 -0500
Subject: [PATCH] add gallery granRT and SingBuB

---
 docs/webroot/gallery.html | 62 +++++++++++++++++++++++++++++++++++++++
 1 file changed, 62 insertions(+)

diff --git a/docs/webroot/gallery.html b/docs/webroot/gallery.html
index fc86588..839834f 100644
--- a/docs/webroot/gallery.html
+++ b/docs/webroot/gallery.html
@@ -62,6 +62,68 @@
 END TEMPLATE-->
 
 
+        <header class="major">
+          <h2>Boyce Single Bubble</h2>
+          <p>Qualitative Benchmarking: Single bubble injection</p>
+        </header>
+        <div class="row 50% uniform">
+          <div class="4u 12u(small)">
+            <center>
+              <iframe src="https://widgets.figshare.com/articles/10299065/embed?show_title=0" 
+               width="250" height="310" allowfullscreen="true" frameborder="0"></iframe>
+            </center>
+          </div>
+          <div class="8u$ 12u(small)">
+            Recent <a href="https://doi.org/10.1016/j.ces.2019.01.047">experiments</a>
+            by C.M. Boyce and coworkers considers the rapid, high-speed injection 
+            of a single bubble into an incipiently fluidized bed. Here, the 50 m/s jet is turned on 
+            for 150 ms causing a single large bubble to form, rise through the 3 mm particle bed and
+            erupt a the surface. <a href="https://ovito.org">Ovito</a> animaiton shows particles in 
+            the center 10 mm thick slice of the 190 mm diameter bed, colored by their vercial 
+            velocity ranging from -0.3 m/s (black) to 1.0 m/s (white). 
+            Simulation models 260K particles with MFiX-Exa 19.08 using 32 CPU cores.
+            <p><p>
+
+            Animation courtesy William D. Fullmer,
+            <a href="https://mfix.netl.doe.gov">Multiphase Flow Science Group</a>,
+            NETL, Morgantown WV.
+
+            </p>
+          </div>
+        </div>
+        <p>
+
+
+
+        <header class="major">
+          <h2>Granular Rayleigh-Taylor</h2>
+          <p>Qualitative Benchmarking: Gravitational granular flow instability</p>
+        </header>
+        <div class="row 50% uniform">
+          <div class="8u 12u(small)">
+            The "granular" variant of the classical RT instability superimposes an assemply of 
+            1.12M random loose packed particles over air. The instability finger/bubble pattern 
+            which reaches a (statistical) equilibrium between coarsening via finger merging and 
+            refinement via bubble splitting. Black and white <a href="https://ovito.org">ovito</a> 
+            animation shows particle location.
+            Simulation performed with MFiX-Exa 19.08 238 16 CPU cores.
+            <p><p>
+
+            Animation courtesy of William D. Fullmer,
+            <a href="https://mfix.netl.doe.gov">Multiphase Flow Science Group</a>,
+            NETL, Morgantown WV.
+
+            </p>
+          </div>
+          <div class="4u$ 12u(small)">
+            <center>
+              <iframe src="https://widgets.figshare.com/articles/10299014/embed?show_title=0" 
+               width="250" height="310" allowfullscreen="true" frameborder="0"></iframe>
+            </center>
+          </div>
+        </div>
+        <p>
+
  
         <header class="major">
           <h2>Mehrdad's Bed</h2>
-- 
GitLab