Skip to content
Snippets Groups Projects
Commit 21af62aa authored by Ann Almgren's avatar Ann Almgren
Browse files

more formatting

parent 28b4301c
No related branches found
No related tags found
No related merge requests found
......@@ -14,14 +14,13 @@ In the predictor
- Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting
.. math:: (\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n +
\Delta t \left( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) - \varepsilon_g \nabla {p_g}^{n-1/2} \right.
.. math:: \left. \nabla \cdot \tau^n + \sum_p \beta_p (V_p - {U_g}^{\ast}) + \rho_g g \right)
.. math:: (\varepsilon_g \rho_g U)^{\ast} &= (\varepsilon_g \rho_g U)^n -
\Delta t \left( \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} \right) \\ &+
\Delta t \left( \nabla \cdot \tau^n + \sum_p \beta_p (V_p - {U_g}^{\ast}) + \rho_g g \right)
- Project :math:`U^{\ast}` by solving
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( (\varepsilon_g U)^{\ast}+ \Delta t \varepsilon_g \nabla {p_g}^{n-1/2} \right)
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( (\frac{1}{\Delta t \varepsilon_g U)^{\ast}+ \varepsilon_g \nabla {p_g}^{n-1/2} \right)
then defining
......@@ -38,11 +37,11 @@ In the corrector
- Define a new approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting
.. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} &= (\varepsilon_g \rho_g U)^n + \frac{\Delta t}{2} \left( - \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n - \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast}\right) + \\ &+ \frac{\Delta t}{2} \left( \nabla \cdot \tau^n + \nabla \cdot \tau^{\ast \ast} \right) + \Delta t \left( - \varepsilon_g \nabla {p_g}^{n+1/2,\ast} + \sum_p \beta_p (V_p - {U_g}^{\ast \ast \ast} + \rho_g g \right)
.. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} &= (\varepsilon_g \rho_g U)^n - \frac{\Delta t}{2} \left( \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n + \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast}\right) + \\ &+ \frac{\Delta t}{2} \left( \nabla \cdot \tau^n + \nabla \cdot \tau^{\ast \ast} \right) + \Delta t \left( - \varepsilon_g \nabla {p_g}^{n+1/2,\ast} + \sum_p \beta_p (V_p - {U_g}^{\ast \ast \ast}) + \rho_g g \right)
- Project :math:`U^{\ast \ast \ast}` by solving
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( (\varepsilon_g U)^{\ast \ast \ast} + \Delta t \varepsilon_g \nabla {p_g}^{n+1/2,\ast} \right)
.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( \frac{1}{\Delta t} (\varepsilon_g U)^{\ast \ast \ast} + \varepsilon_g \nabla {p_g}^{n+1/2,\ast} \right)
then defining
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment