Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
docs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
William D. Fullmer
docs
Commits
e9951cd6
Commit
e9951cd6
authored
6 years ago
by
Ann Almgren
Browse files
Options
Downloads
Patches
Plain Diff
Formatting
parent
c7c0f1c9
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
docs/source/FluidTimeDiscretization.rst
+3
-11
3 additions, 11 deletions
docs/source/FluidTimeDiscretization.rst
with
3 additions
and
11 deletions
docs/source/FluidTimeDiscretization.rst
+
3
−
11
View file @
e9951cd6
...
...
@@ -12,12 +12,9 @@ In the predictor
#. Define :math:`U^{MAC}`, the face-centered (staggered) MAC velocity which is used for advection.
#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^* = (\varepsilon_g \rho_g U)^n +
\Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)
+ \varepsilon_g \nabla {p_g}^{n-1/2} + \nabla \cdot \tau^n
+ \sum_{part} \beta_p (V_p - {U_g}^*) + \rho_g g )`
#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{*} = (\varepsilon_g \rho_g U)^n + \Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} + \nabla \cdot \tau^n + \sum_{part} \beta_p (V_p - {U_g}^{*}) + \rho_g g )`
#. Project :math:`U^
*
` by solving
#. Project :math:`U^
{*}
` by solving
:math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^*`
then defining
:math:(\varepsilon_g U)^{**} = (\varepsilon_g U)^{*} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
...
...
@@ -26,12 +23,7 @@ In the predictor
In the corrector
#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{***} = (\varepsilon_g \rho_g U)^n +
\Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n
-(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{**}
+ \varepsilon_g \nabla {p_g}^{n+1/2,*}
+ (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{**}
+ \sum_{part} \beta_p (V_p - {U_g}^{**}) + \rho_g g )`
#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{***} = (\varepsilon_g \rho_g U)^n + \Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{**} + \varepsilon_g \nabla {p_g}^{n+1/2,*} + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{**} + \sum_{part} \beta_p (V_p - {U_g}^{**}) + \rho_g g )`
#. Project :math:`U^{***}` by solving
:math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{***}`
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment