12.1.6. Gas phase¶
12.1.6.1. ALPHA_TRANSPORT(SPECIES)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
The polarizability in transport data. [in cubic Angstroms].
12.1.6.2. C_PG0¶
Data Type: DOUBLE PRECISION
Specified constant gas specific heat [J/(kg.K) in SI].
12.1.6.3. CONFIG_TRANSPORT(SPECIES)¶
Data Type: INTEGER
\(1 \le Species \le 100\)
Geometrical configuration of molecule.
Name |
Default? |
Description |
---|---|---|
|
Monatomic |
|
|
Linear |
|
|
Nonlinear |
12.1.6.4. DABG(SPECIES, SPECIES)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
\(1 \le Species \le 100\)
Set constant binary diffusion coefficients if known [m^2/s in SI]
12.1.6.5. DIF_COEFF_KT¶
Data Type: LOGICAL
Compute diffusion coefficients from kinetic theory.
Name |
Default? |
Description |
---|---|---|
|
◉ |
Use constant diffusion coefficients. Diffusion data can be obtained from:
|
|
Compute diffusion coefficients from kinetic theory. Parameters in Lennard-Jones intermolecular potential model can be obtained from:
|
12.1.6.6. DIF_G0¶
Data Type: DOUBLE PRECISION
Specified constant gas diffusivity [m^2/s in SI].
12.1.6.7. DIF_THERMAL¶
Data Type: LOGICAL
Include thermal diffusion in multicomponent diffusion model.
Name |
Default? |
Description |
---|---|---|
|
Compute thermal diffusion. |
|
|
◉ |
Ignore effects of thermal diffusion. |
12.1.6.8. HB_GAMA_C¶
Data Type: DOUBLE PRECISION
Strain rate cutoff [1/s] in Herschel-Bulkley viscosity law.
12.1.6.9. HB_K0¶
Data Type: DOUBLE PRECISION
Consistency factor [Pa.s^n] in Herschel-Bulkley viscosity law.
12.1.6.10. HB_N¶
Data Type: DOUBLE PRECISION
Power law index (dimensionless) in Herschel-Bulkley viscosity law.
0 < HB_n < 1 : Shear thinning fluid
HB_n = 1 : Bingham fluid
HB_n > 1 : Shear thickening fluid
12.1.6.11. HB_TAU0¶
Data Type: DOUBLE PRECISION
Bingham yield stress [Pa] in Herschel-Bulkley viscosity law.
12.1.6.12. K_G0¶
Data Type: DOUBLE PRECISION
Specified constant gas conductivity [J/(s.m.K) in SI].
12.1.6.13. KG_MODEL¶
Data Type: CHARACTER
Gas thermal conductivity model (default is temperature-dependent value for air).
Name |
Default? |
Description |
---|---|---|
|
Constant thermal conductivity. K_g0 must be specified. |
|
|
◉ |
Temperature-dependent model for air |
|
Lennard-Jones model. Bird, R., Stewart, W. and Lightfoot, E. (2002) Transport Phenomena.2nd Edition, John Wiley and Sons, New York. Eq.(9.3-13) on Page 275 for the calculation of thermal conductivity. Eq.(E.2-1) on Page 866 for the collision integral. |
|
|
Polynomial fit from species transport data using cantera. https://cantera.org/dev/cxx/d8/d58/classCantera_1_1GasTransport.html#a267d20cdea7486fe84e722ee82d84b20 |
|
|
User-defined function |
12.1.6.14. LJEPS(SPECIES)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
Epsilon/k coefficient in Lennard-Jones potential [in Kelvin].
12.1.6.15. LJSIG(SPECIES)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
Sigma coefficient in Lennard-Jones potential [in Angstrom].
12.1.6.16. MU_G0¶
Data Type: DOUBLE PRECISION
Specified constant gas viscosity [Pa.s in SI].
12.1.6.17. MU_G_MODEL¶
Data Type: CHARACTER
Gas viscosity model (default is Sutherland’s law).
Name |
Default? |
Description |
---|---|---|
|
Constant viscosity |
|
|
◉ |
Sutherland’s law |
|
Herschel-Bulkley (non-Newtonian) model |
|
|
Lennard-Jones model. Bird, R., Stewart, W. and Lightfoot, E. (2002) Transport Phenomena.2nd Edition, John Wiley and Sons, New York. Eq.(1.4-14) on Page 26 for the calculation of viscosity. Eq.(E.2-1) on Page 866 for the collision integral. |
|
|
Polynomial fit from species transport data using cantera. https://cantera.org/dev/cxx/d8/d58/classCantera_1_1GasTransport.html#a267d20cdea7486fe84e722ee82d84b20 |
|
|
User-defined function |
12.1.6.18. MU_TRANSPORT(SPECIES)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
The dipole moment in transport data. [in Debye].
12.1.6.19. MULTI_COMPONENT_DIFFUSION¶
Data Type: LOGICAL
Solve the multicomponent diffusion model.
Name |
Default? |
Description |
---|---|---|
|
Include multicomponent diffusion model in species equation. |
|
|
◉ |
Do not include multicomponent diffusion model. |
12.1.6.20. MW_AVG¶
Data Type: DOUBLE PRECISION
Average molecular weight of gas [kg/kmol in SI]. Used in calculating the gas density for non-reacting flows when the gas composition is not defined.
12.1.6.21. MW_G(SPECIES)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
Molecular weight of gas species [kg/kmol in SI].
12.1.6.22. NMAX_G¶
Data Type: INTEGER
Number of species comprising the gas phase.
12.1.6.23. POLY_KG(SPECIES, INDEX)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
\(1 \le Index \le 5\)
The fitted polynomial for species thermal conductivity from Cantera based on the transport data.
12.1.6.24. POLY_MU_G(SPECIES, INDEX)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
\(1 \le Index \le 5\)
The fitted polynomial for species viscosity from Cantera based on the transport data.
12.1.6.25. RO_G0¶
Data Type: DOUBLE PRECISION
Specified constant gas density [kg/m^3 in SI]. An equation of state, the ideal gas law by default, is used to calculate the gas density if this parameter is undefined. The value may be set to zero to make the drag zero and to simulate granular flow in a vacuum. For this case, users may turn off solving for gas momentum equations to accelerate convergence.
12.1.6.26. SL_MUREF¶
Data Type: DOUBLE PRECISION
Reference gas viscosity [Pa.s in SI] in the Sutherland’s law.
12.1.6.27. SL_S¶
Data Type: DOUBLE PRECISION
Sutherland constant [K] in the Sutherland’s law.
12.1.6.28. SL_TREF¶
Data Type: DOUBLE PRECISION
Reference temperature [K] in the Sutherland’s law.
12.1.6.29. SPECIES_ALIAS_G(SPECIES)¶
Data Type: CHARACTER
\(1 \le Species \le 100\)
User defined name for gas phase species. Aliases are used in specifying chemical equations and must be unique.
12.1.6.30. SPECIES_G(SPECIES)¶
Data Type: CHARACTER
\(1 \le Species \le 100\)
Name of gas phase species as it appears in the materials database.
12.1.6.31. ZROT_TRANSPORT(SPECIES)¶
Data Type: DOUBLE PRECISION
\(1 \le Species \le 100\)
The rotational relaxation collision number at 298K. It is dimensionless.