8. References


J.W. Banks, T. Aslam, and W.J. Rider. On sub-linear convergence for linearly degenerate waves in capturing schemes. Journal of Computational Physics, 227(14):6985 – 7002, 2008. URL: http://www.sciencedirect.com/science/article/pii/S0021999108002088, doi:https://doi.org/10.1016/j.jcp.2008.04.002.


Ryan B. Bond, Curtis C. Ober, Patrick M. Knupp, and Steven W. Bova. Manufactured solution for computational fluid dynamics boundary condition verification. AIAA Journal, 45(9):2224–2236, 2007. URL: https://doi.org/10.2514/1.28099, arXiv:https://doi.org/10.2514/1.28099, doi:10.2514/1.28099.


C.Y.Wen and Y.H.Yu. Mechanics of fluidization. In Chemical Engineering Progress Symposium Series, volume 62, 100–111. 1966.


Feng Chen, Eric. C. Drumm, and Georges Guiochon. Prediction/verification of particle motion in one dimension with the discrete-element method. International Journal of Geomechanics, 7(5):344–352, 2007. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291532-3641%282007%297%3A5%28344%29, doi:10.1061/(ASCE)1532-3641(2007)7:5(344).


A. Choudhary, C.J. Roy, J. Dietiker, M. Shahnam, and R. Garg. Code verification for multiphase flows using the method of manufactured solutions. In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. August 2014.


Aniruddha Choudhary, Christopher J. Roy, Edward A. Luke, and Subrahmanya P. Veluri. Code verification of boundary conditions for compressible and incompressible computational fluid dynamics codes. Computers & Fluids, 126:153 – 169, 2016. URL: http://www.sciencedirect.com/science/article/pii/S0045793015003916, doi:https://doi.org/10.1016/j.compfluid.2015.12.003.


AIAA Standards Committee and others. AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (G-077-1998). 1998.


Rahul Garg, Janine Galvin, Tingwen Li, and Sreekanth Pannala. Open-source mfix-dem software for gas–solids flows: part i—verification studies. Powder Technology, 220:122 – 137, 2012. Selected Papers from the 2010 NETL Multiphase Flow Workshop. URL: http://www.sciencedirect.com/science/article/pii/S003259101100502X, doi:https://doi.org/10.1016/j.powtec.2011.09.019.


Aytekin Gel, Avinash Vaidheeswaran, Jordan Musser, and Charles H Tong. Toward the development of a verification, validation, and uncertainty quantification framework for granular and multiphase flows—part 1: screening study and sensitivity analysis. Journal of Verification, Validation and Uncertainty Quantification, 2018.


U Ghia, K.N Ghia, and C.T Shin. High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method. Journal of Computational Physics, 48(3):387 – 411, 1982. URL: http://www.sciencedirect.com/science/article/pii/0021999182900584, doi:https://doi.org/10.1016/0021-9991(82)90058-4.


Philip M. Gresho and Stevens T. Chan. On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. part 2: implementation. International Journal for Numerical Methods in Fluids, 11(5):621–659, 1990. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650110510, doi:10.1002/fld.1650110510.


Reghan J Hill, Donald L Koch, and Anthony JC Ladd. The first effects of fluid inertia on flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 448:213, 2001.


A.H. Kharaz, D.A. Gorham, and A.D. Salman. An experimental study of the elastic rebound of spheres. Powder Technology, 120(3):281 – 291, 2001. URL: http://www.sciencedirect.com/science/article/pii/S0032591001002832, doi:https://doi.org/10.1016/S0032-5910(01)00283-2.


Myoungkyu Lee and Robert D. Moser. Direct numerical simulation of turbulent channel flow up to $\mathit Re_\it \tau \approx 5200$. Journal of Fluid Mechanics, 774:395–415, 2015. doi:10.1017/jfm.2015.268.


PF Linden, JM Redondo, and DL Youngs. Molecular mixing in rayleigh–taylor instability. Journal of Fluid Mechanics, 265:97–124, 1994.


R. Liska and B. Wendroff. Comparison of several difference schemes on 1d and 2d test problems for the euler equations. SIAM Journal on Scientific Computing, 11(5):621–659, 2003. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650110510, doi:10.1002/fld.1650110510.


Anthony F Mills. Basic heat and mass transfer. Prentice hall, 1999.


William L Oberkampf and Timothy G Trucano. Verification and validation in computational fluid dynamics. Technical Report, Sandia National Laboratories, 3 2002. doi:10.2172/793406.


William L. Oberkampf and Christopher J. Roy. Verification and Validation in Scientific Computing. Cambridge University Press, 2010. doi:10.1017/CBO9780511760396.


Alberto Di Renzo and Francesco Paolo Di Maio. Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chemical Engineering Science, 59(3):525 – 541, 2004. URL: http://www.sciencedirect.com/science/article/pii/S0009250903005414, doi:https://doi.org/10.1016/j.ces.2003.09.037.


Shane A. Richards. Completed richardson extrapolation in space and time. Communications in Numerical Methods in Engineering, 13(7):573–582, 1998. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291099-0887%28199707%2913%3A7%3C573%3A%3AAID-CNM84%3E3.0.CO%3B2-6, doi:10.1002/(SICI)1099-0887(199707)13:7<573::AID-CNM84>3.0.CO;2-6.


P. J. Roache. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29(1):123–160, 1997. URL: https://doi.org/10.1146/annurev.fluid.29.1.123, doi:10.1146/annurev.fluid.29.1.123.


P. J. Roache and S. Steinberg. Symbolic manipulation and computational fluid dynamics. AIAA Journal, 22(10):1390–1394, 1984. URL: https://doi.org/10.2514/3.8794, doi:10.2514/3.8794.


Patrick J Roache. Fundamentals of verification and validation. Hermosa Publishers, 2009.


Christopher J. Roy. Grid convergence error analysis for mixed-order numerical schemes. AIAA Journal, 41(4):595–604, 2003. URL: https://doi.org/10.2514/2.2013, arXiv:https://doi.org/10.2514/2.2013, doi:10.2514/2.2013.


Christopher J. Roy. Review of code and solution verification procedures for computational simulation. Journal of Computational Physics, 205(1):131 – 156, 2005. URL: http://www.sciencedirect.com/science/article/pii/S0021999104004619, doi:https://doi.org/10.1016/j.jcp.2004.10.036.


L. Schiller and A. Naumann. Fundamental calculations in gravitational processing. Zeitschrift Des Vereines Deutscher Ingenieure, 77:318 – 320, 1933.


S. Schlesinger. Terminology for model credibility. Simulation, 32(3):103–104, 1979. URL: https://doi.org/10.1177/003754977903200304, doi:10.1177/003754977903200304.


Dale M Snider. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. Journal of computational physics, 170(2):523–549, 2001.


DM Snider and MJ Andrews. The structure of shear driven mixing with an unstable thermal stratification. Journal of Fluids Engineering, 118:55–60, 1996.


Madhava Syamlal, Thomas J. O’Brien, Sofiane Benyahia, Aytekin Gel, and Sreekanth Pannala. Open-source software in computational research: a case study. Model. Simul. Eng., 2008:1:1–1:10, January 2008. URL: http://dx.doi.org/10.1155/2008/937542, doi:10.1155/2008/937542.


A. Vaidheeswaran, J. Musser, and M.A. Clarke. Verification and validation of mfix-pic. Technical Report, U.S. Department of Energy, National Energy Technology Laboratory, 3 2020. doi:10.2172/1618293.


Graham B Wallis. One-dimensional two-phase flow. McGraw-Hill, 1969.


Yupeng Xu, Jordan Musser, Tingwen Li, Balaji Gopalan, Rupen Panday, Jonathan Tucker, Greggory Breault, Mary Ann Clarke, and William A Rogers. Numerical simulation and experimental study of the gas–solid flow behavior inside a full-loop circulating fluidized bed: evaluation of different drag models. Industrial & Engineering Chemistry Research, 57(2):740–750, 2018.


David L Youngs. Numerical simulation of turbulent mixing by rayleigh-taylor instability. Physica D: Nonlinear Phenomena, 12(1-3):32–44, 1984.


M. V. Zagarola and A. J. Smits. Mean-flow scaling of turbulent pipe flow. Journal of Fluid Mechanics, 373:33–79, 1998. doi:10.1017/S0022112098002419.